# R Demonstrator: Demonstrator:



instrumer

hadron dump

# instrumented decay tunnel prototype for a monitored neutrino beam



#### **Author's information**

 $K^{\pm} \rightarrow \mu^{\pm} \overline{\nu}_{\mu}$ 

**Leon Halić** on behalf of **NP06/ENUBET** collab.

Ruđer Bošković Institute, Zagreb, Croatia

Leon.Halic@irb.hr

## **ENUBET** – a monitored neutrino beam story

Monitored neutrino beams are a novel technology to measure the neutrino flux at the source by **observing the charged leptons** that are created in the K and  $\pi$  decays

#### **ENUBET's goals**

 $\checkmark$  Knowledge of absolute  $v_e$  and  $v_u$  flux at 1% level



**Fully static focusing by** quadrupole triplet

**Slow proton extraction** continuous for 2 s Narrow-band beam p = 8.5 GeV/c ± 10%

1 m radius

Instrumented decay tunnel

40 m length

## **Demonstrator concept**

**1.7 m long quarter-section of the decay tunnel** 

e<sup>+</sup> (signal) topology

 $\pi^{+}$  (background) topology

### Calorimeter

Plastic scintillator and iron interleaved

3 radial layers

WLS fibers to SiPM for light collection

#### **Photon veto**

No iron between plastic scintillators Reject neutral particles (photons and  $\pi^0$ )





# Demonstrator

 $\pi^0$  (background) topology

 $\mu^+$ (signal/bkg) topology

- $\checkmark$  ~3 x 3 cm<sup>2</sup> plastic scintillator tiles
- $\checkmark$  15 channels along the z (beam) direction
- $\checkmark$  10  $\phi$  (angular) channels in the first 8 z layers and 25 φ channels in the remaining 7 layers
- ✓ 30 cm Borated PolyEthylene shielding that protects the SiPMs from neutron irradiation



Hamamatsu S14160-4050HS 4 × 4 mm<sup>2</sup> SiPM - Calorimeter 5 layers of tiles interleaved with iron slabs along the z-axis makes for 1 channel - 4.3 radiation lengths in beam direction

Hamamatsu S14160-3050HS 3 × 3 mm<sup>2</sup> SiPM - Veto

2 layers of tiles without iron along the *z*-axis makes for 1 channel







# Beam test setup at CERN PS East area

- Beams of electrons, hadrons and muons with momenta 0.5–10 GeV/c  $\checkmark$
- Two 9.3×9.3 cm<sup>2</sup> silicon microstrip trackers for primary particle track reconstruction  $\checkmark$
- One 10×10 cm<sup>2</sup> plastic scintillator as a trigger for the acquisition of the whole system  $\checkmark$

ΤS

Two Cherenkov threshold detectors from the T09 beamline for particle ID



# 2023 setup Beam



#### Various tilt angles (0,50,100,200 mrad)



# **Energy resolution for electrons**

#### **Electron energy resolution**

----- data 2023



#### References

- F. Acerbi et al., Design and performance of the ENUBET monitored neutrino beam. Eur. Phys. J. C 83, 964 (2023)
- ENUBET Collaboration, NP06/ENUBET annual report 2024 for the SPSC, CERN-SPSC-2024-018, SPSC-SR-349

**More on ENUBET** 

Plenary talk by **Giulia Brunetti** on Friday at 11:20

Poster **#13** by **Filippo Bramati** on Friday

