

LOW-BACKGROUND RADIOCHEMISTRY TECHNIQUES FOR EXTREMELY RARE-EVENT PHYSICS SEARCH

Olga Gileva*

Center for Underground Physics (CUP), Institute for Basic Science (IBS), Daejeon, 34126, Korea

Motivation & Highlights

- Radioanalytical chemistry methods and techniques have recently been widely involved in very low-level radioactivity measurements for physics experiments searching for extremely rare events such as double-beta decay, rare nuclear decays, and dark matter.
- All experiments searching for events with elusive rates are bound by the unavoidable necessity to reduce to zero **background levels and enlarge a target material** to identify feeble signals.
- For studying the 0v $\beta\beta$ decay at $(m_v) = 10-30$ meV, a recent generation of experiments dealing with 100kg-scale

detectors. To study the range of $(m_v) < 10$ meV, new, more sensitive experiments with the mass of the investigated isotope ~ 1–10 tonnes ((m_v) = 3–10 meV) are required.

- New experiments with masses of the studied isotope of interest for one tonne or more will require a background index of approximately 5.10⁻⁶ ckky.
- Controlling and monitoring the required radiopurity in the target material and its purification and recycling requires the development and involvement of radiochemical methods of purification and separation.
- The construction of the detector itself, its peripheral sub-systems and shieldings needs the development of special surface cleaning procedures and highly-sensitive radio-assay methods.

Purification & Recycling of $^{100}MoO_3$ for AMoRE-II

Batch #	ΑΙ	K	Fe	Ni	Cυ	Ti	Cr	Sr	Ba	Pb	Th	U	
	[ppm]	[ppi	m] [ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppb]	[ppb]	[ppb]	[ppt]	[ppt]	
Projected requirements													
	<1	<]	<]	<1	<1	<]	<1	<1	<3	<]	<10	<10	
		Purified powder (over 100 produced batches). ICP-MS @ CUP											
Range,	< 0 1		\circ										
min -	< 0.1 -	< 0.2	< 0.05	< 0.05	< 0.2	< 0.2	< 0.2	< 0.2	< 4	< 0.5	< 2.3	< 4	
max	0.6	< 0	.5										
			²²⁸ Ac		²²⁸ Th			²²⁶ Ra		40 K			
HPGe array @ CUP [µBq/kg]													
Raw ¹⁰⁰ MoO ₃			260 ± 50		210 ± 50			260 ± 50		85	8500 ± 1400		
Purified ¹⁰⁰ MoO ₃			< 27		< 16			110 ± 30		1700 ± 340			

- Efficient purification method developed
- Clean chemical facilities and equipment designed and installed
- ~150 kg of $^{100}MoO_3$ powder was purified at CUP within the last 3 years

- ~99% production efficiency, 1% irrecoverable losses
- 50 kg per year is the current ightarrowcapacity
- Could be easily enlarged to over 100 kg per year

Th and U assay at sub-ppt level

Surface purity control

Copper bulk samples	Th, ppt	U, ppt						
NOSV 2014 (October, 2019 meas.)	4.3 ± 0.29	1.66 ± 0.04						
NOSV 2014 (May, 2019 meas.)	5.13 ± 1.2	1.55 ± 0.7	Kerosene + EtOH Oxalic acid	Nitric acid				
NOSV 2016	0.34 ± 0.12	0.29 ± 0.04						
NOSV 2021	0.26 ± 0.01	0.29 ± 0.06						
OFE Mitsubishi	2.19 ± 0.21	1.28 ±0.19	Cusensor holders fo	or AMORE-ILO				
OFE Aurubis 2018	0.98 ± 0.08	1.01 ± 0.05						
OFE Aurubis 2021	0.98 ± 0.14	0.83 ± 0.11	Th, ppt					
OFE Wonil 2023 ROK	0.75 ± 0.15	0.43 ± 0.12	Cu Sensor holders					
	Appl Radiat Isc	NOSV 2021	0.26 ± 0.01	0				
was developed us	nd U solid phase sing UTEVA Eichrom plied to copper ar	Machined after surface cleaning	0.34 ± 0.09	0				
and measured wit		Brass Screws, Sanco company, Korea						
 ~0.1 ppt detection 	<mark>n limit for Th and U i</mark>	No cleaning brass	89.25 ± 0.39	20				
 ~1 ppt detection samples 	n limit for Th and	Sonication with ethanol	5.69 ± 0.14	1				
			HNO ₃ etching	1.43 ± 0.13	0			
CENTER FOR	IYSICS			Fro	ont Phys 12,			

U, ppt

 0.29 ± 0.06

0.41 ± 0.08

20.75 ± 0.56

1.39 ± 0.15

0.49 ± 0.12

June 16-22, 2024 – Milan, Italy

nt Phys 12, 1362209 (2024)