Surface Events Pulse Shape Simulation for the LEGEND Experiment

Alexander F. Leder^a, Kevin H. Bhimani^{b,c}, Julieta Gruszko^{b,c} on behalf of the LEGEND collaboration ^a Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87544 email: aleder@lanl.gov ^b University of North Carolina at Chapel Hill, 120 E. Cameron Ave., Chapel Hill, NC 27599 ^c Triangle Universities Nuclear Laboratory, 116 Science Drive, Durham, NC 27708

LEGEND Collaboration

"The collaboration aims to develop a phased, Ge-76 based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

Phase 1: LEGEND-200 200 kg of detectors at LNGS Taking data with 142 kg source in atmospheric LAr 10⁺³ kg-yr exposure goal Background goal: $< 2 \times 10^{-4} \text{ cts/(keV kg yr)}$

- Phase 2: LEGEND-1000 1000 kg of detectors at LNGS
- Enriched ICPC detectors in underground LAr
- 10⁺⁴ kg-yr exposure goal
- Background goal:

 $< 1 \times 10^{-5}$ cts/(keV kg yr)

pint Inst. for Nucl. oint Res. Centre Ge Lab. Naz. Gran Sasso Lancaster Univ imon Fraser Univ Leibniz Inst. for Crystal Growt

OKLAHOMA TENNES	CARCINA CARCINA	North	Aðihva Simnista Mediterranean Sea Leban
Dallas MISSISSIPPI ALABAM TEXAS Antonio Houston	GEORGIA	More	Seco Israel, Cairo
	Leibniz Inst. for Polymer Research	South Dakota Mines	Univ. of Padova and INFN
	Los Alamos Natl. Lab.	Tech. Univ. Dresden	Univ. of Regina
ague and IEAP	Max Planck Inst. for Nucl. Phy.	Tech. Univ. Munich	Univ. of South Carolina
	Max Planck Inst. for Physics	Tennessee Tech. Univ.	Univ. of South Dakota
L	Natl. Res. Center Kurchatov Inst.	Univ. of California and LBNL	Univ. of Tennessee
nst.	Natl. Res. Nucl. Univ. MEPhl	Univ. College London	Univ. of Texas at Austin
ngton	North Carolina State Univ.	Univ. of L'Aquila and INFN	Univ. of Tuebingen
Acad. Sci.	Oak Ridge Natl. Lab.	Univ. of Cagliari and INFN	Univ. of Warwick
	Polytech. Univ. of Milan	Univ. of Houston	Univ. of Washington and CENPA
es.	Princeton Univ.	Univ. of Liverpool	Univ. of Zurich
el	Queen's Univ.	Univ. of Milan and INFN	Williams College
)	Roma Tre Univ. and INFN	Univ. of Milano Bicocca and INFN	

Univ. of New Mexico

Univ. of North Carolina at Chapel Hil

LEGEND 200 Background Model

Charge Collection on Passivated surface

- Background model after cuts is
 - based on assays, Monte Carlo
- simulations, and background

rejection techniques

 Major background contribution before deployment and dominant uncertainty from

surface α and beta events

Simulating Surface Alphas

- Charge trapping and rerelease effect is not accurately modeled in current simulations
- α interactions produce a large and dense charge cloud on the surface
- Diffusion and self-repulsion effects are significant
- Charges ending up on the surface could lead to a delayed charge component even without surface charge

- Slow charge collection observed on
- Charges experience trapping, slow re-release and/or reduced drift speed

For more details on LEGEND L200 background modelling see poster by Toby Dixon/ Sofia Calgaro

Alpha Scanner Results

Developed by David Radford

EH Drift Simulations

Parallel Computing on GPU

Implemented the simulation software in

• Dedicated α scans gave conflicting results in

parallel on GPU grid using CUDA C++.

GPU-based calculation dramatically

speeds up intrinsically parallel

calculations

energy collection.

• Variation could be driven by charge build up

on the passivated surface.

• EH Drift matches the data using combination

of surface charge and surface drift

Incorporating into LEGEND Simulation Chain

- Work in process
- Given the E&M simulations we can then create a 3D model of the detector response to α events (top plot)

INF

Conclusion and Future Directions

- Passivated surface events are the large contributors to uncertainty in LEGEND-200 backgrounds.
- Modeling α events requires an accurate modeling of charge collection on the passivated surface New waveform simulation technique accurately reproduces observed behavior of α 's, and GPU-based simulations show significant speed-up

- Then create a library for each type of LEGEND-200 detector
- Can then smear out an expected spectrum of surface α (3200 keV surface α simulated in bottom plot) for different values of σ (surface charge)
- Aiming to generate a series of smeared spectra for use in the LEGEND background model
- Analysis performed by LEGEND analysis suite –

MaGe/MPP/MDGO

Simulations are being integrated in LEGEND simulations lacksquareworkflow to create a background model component for α 's

Acknowledgements

This work is supported by the U.S. DOE and the NSF, the LANL, ORNL and LBNL LDRD programs; the European ERC and Horizon programs; the German DFG, BMBF, and MPG; the Italian INFN; the Polish NCN and MNiSW; the Czech MEYS; the Slovak SRDA; the Swiss SNF; the UK STFC; the Canadian NSERC and CFI; the LNGS, SNOLAB, and SURF facilities.

