

Measurement of two-neutrino double electron capture half-life of ¹²⁴Xe with the PandaX-4T detector

Zihao Bo (for the PandaX collaboration)

INPAC, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China

zihaobo@sjtu.edu.cn

Double Electron Capture

PandaX-4T Detector

Dual phase xenon detector capability:

- √ 4 tonne natural Xe in sensitive volume, ~0.1% ¹²⁴Xe abundance.
- ✓ Single / multi-site identification
- ✓ 3D reconstruction and fiducialization
- ✓ Calorimeter from sub keV to MeV

Methodology

- Precise energy reconstruction performed by calibration.
- ➤ Un-binned 2D-profile likelihood fit to Run0 + Run1 data in the parameter space of (energy, time)
- Find the number of count of ¹²⁴Xe during the data exposure.

Background Model of ¹²⁴Xe 2vECEC

- ROI: 25~75keV
- ~2.4kg ¹²⁴Xe in the fiducial volume.
- The estimation of background content comes from other analyses of hundred keV to MeV spectrum of PandaX-4T.

Preliminary Result

- ✓ Preliminary measurement on 124 Xe 2vECEC half-life: 9.5 \pm 0.9(stat.) \pm 1.5(syst.) \times 10 21 yr, with the exposure of 1.7 kg \cdot yr of 124 Xe
- ✓ Self-consistent within data, and consistent with other experiments.
- ✓ Analysis of 124 Xe 0vECEC is processing.

Reference:

10.1103/PhysRevLett.132.152502 10.1140/epjc/s10052-020-08726-w

