electron capture half－life of ${ }^{124} \mathbf{X e}$ with the PandaX－4T detector

Zihao Bo（for the PandaX collaboration）

INPAC，School of Physics and Astronomy，Shanghai Jiao Tong University，Shanghai
Key Laboratory for Particle Physics and Cosmology，Shanghai 200240，China
zihaobo＠sjtu．edu．cn

Double Electron Capture

PandaX－4T Detector

Dual phase xenon detector capability：
$\checkmark 4$ tonne natural Xe in sensitive volume，$\sim 0.1 \%{ }^{124} \mathrm{Xe}$ abundance．
\checkmark Single／multi－site identification
\checkmark 3D reconstruction and fiducialization

\checkmark Calorimeter from sub keV to MeV

Methodology

＞Precise energy reconstruction performed by calibration．
$>$ Un－binned 2D－profile likelihood fit to Run0＋ Run1 data in the parameter space of （energy，time）
$>$ Find the number of count of ${ }^{124} \mathrm{Xe}$ during the data exposure．
$T_{1 / 2}=\ln 2 \frac{N_{A} \times \epsilon \times \eta \times m t}{M \times N}$

－ROI： $25^{\sim} 75 \mathrm{keV}$
－${ }^{\sim} 2.4 \mathrm{~kg}{ }^{124} \mathrm{Xe}$ in the fiducial volume．
－The estimation of background content comes from other analyses of hundred keV to MeV spectrum of PandaX－4T．

Preliminary Result

\checkmark Preliminary measurement on ${ }^{124} \mathrm{Xe} 2 \mathrm{vECEC}$ half－life： $9.5 \pm$ 0.9 （stat．）± 1.5（syst．）$\times 10^{21} \mathrm{yr}$ ，with the exposure of $1.7 \mathrm{~kg} \cdot \mathrm{yr}$ of ${ }^{124} \mathrm{Xe}$
\checkmark Self－consistent within data，and consistent with other experiments．
\checkmark Analysis of ${ }^{124} \mathrm{Xe} 0 v$ ECEC is processing．

