Exploring the impact of Mediterranean Storms on CUORE mK-calorimetric experiment

Simone Quitadamo^{1,2} on behalf of the CUORE collaboration

¹ GSSI - Gran Sasso Science Institute ² INFN - Gran Sasso National Laboratory

1. CUORE experiment

• CUORE searches for $0\nu\beta\beta$ decay of ¹³⁰Te: > ultra-rare process: $T_{1/2}^{0\nu}(^{130}\text{Te}) > 3.8 \cdot 10^{25} \text{ yr} (90\% \text{ C.I.});$

INF

G

S

S

3. Impact of storms on CUORE

3.1 Time correlations between storms and low-*v* **noise**

• Power of a noise *v*-component:

simone.quitadamo@gssi.it

Poster #77

CUORE

- > leptogenesis ($\Delta L = 2$), Majorana $\nu \equiv \overline{\nu}$.
- CUORE experiment @ LNGS (Italy): > 988 low-T calorimeters at T \sim 11-15 mK; > TeO₂ crystals + Ge-NTD thermistors.

• Frequency band of CUORE thermal pulses: ~ 0-5 Hz

identify and characterize sources of low-v noise to improve noise-reduction

- $P_{
 u} = \int_{
 u_1}^{
 u_2} ANPS(
 u) d
 u$
- Noise power ratio: $R_{
 u} = rac{P_{i,
 u}}{P_{ref,
 u}}$
- > sub-Hz noise increases during Mediterranean storm outbreak.

- **3.2 Correlation between sea activity and low-***v* **noise** • Sea waves activity: $I_S = \int_{t_i}^{t_f} [VHM0_A(t) + VHM0_T(t)]dt$ • CUORE low-v noise is linearly correlated to sea activity:
 - > angular coefficient $m_{\nu}^{rel} = \frac{m_{\nu}}{min(\langle P_{\nu} \rangle)}$ quantifies the responsivity of noise to changes of sea activity;
 - > maximum responsivity at $v \sim 0.6$ Hz resonant mode of CUORE infrastructure.

techniques and detectors energy resolution ΔE .

potential worsening of $0\nu\beta\beta$ decay sensitivity:

 $S^{0
u} \propto$

 $\frac{M T}{\Delta E B}$

2. Multi-device approach

- Marine microseisms:
- > faint seisms due to sea waves motion and marine storms;
- > $0.1 \le v_{sea} \le 0.5$ Hz in Adriatic and Tyrrhenian Seas.

• Multi-device approach to correlate data from:

- **3.3 Seasonal modulation of CUORE baseline resolution** • CUORE FWHM_{baseline} is linearly correlated to sea activity.
- The seasonal modulation of Med. Sea activity reflects into **seasonal modulation of CUORE FWHM**_{baseline} (1 yr period).

> Copernicus (E.U. Earth Observation space programme): identify storms, evaluate sea waves amplitude (VHM0); seismometers at LNGS and on top of CUORE: correlate increase of seismic noise at LNGS with storms;

CUORE low-temperature calorimeters.

4. Next steps

• Ongoing analysis:

assess the impact on low-energy threshold; \succ assess the impact on γ -peaks energy resolution; structural tests to mitigate microseismic noise in CUORE

studies to improve the seismic-decoupling system for CUPID (next-gen $0\nu\beta\beta$ decay experiment).

This study has been conducted using E.U. Copernicus Marine Service Information.