

collaboration

Study of radon background in the SuperNEMO demonstrator

SuperNEMO Demonstrator

- **Goal of SuperNEMO :** to search for $0\nu\beta\beta$ process with ⁸²Se (Q_{\beta\beta} ~ 3 MeV)
- **Preliminary SuperNEMO** demonstrator sensitivity: $T_{1/2} > 4.6$ 10²⁴ years (Bayesian), $T_{1/2} > 3.6 \ 10^{24}$ years (Frequentist)
- Able to track and measure electron energy independently
- Data taking in autumn 2024 See SuperNEMO poster #451

Individual Charged Decay particle particle energy vertex and TOF trajectory B KBO BISE (He + Ar gas) \rightarrow Radon (Rn) is the main background in the tracker

Measuring radon activity with ²¹⁴Bi-²¹⁴Po decay events

Measuring Rn activity \Leftrightarrow measuring BiPo activity

Golden ²¹⁴Bi-²¹⁴Po channel: 1 **electron** + 1 delayed **alpha** $(T_{214Po} = 164 \ \mu s)$

Electron identification:

- > 1 Optical Module (OM) triggered
- \geq 1 associated Geiger cell near the OM
- Temporally correlated with the OM
- Alpha identification:

Anti-radon strategy

²²²Rn decay to ²¹⁴Bi (Q_{β^-} = 3.272 MeV) \rightarrow background for $0\nu\beta\beta$ search

Anti-radon strategies:

• Material screening for radiopurity -> very low Rn emanation V • J-Trap facility → ultra high Rn purification of the gas (He+Ar) • Anti-Rn tent \rightarrow Buffer volume against the air from the LSM lab \checkmark • Anti-Rn factory → to inject Rn-free air in the tent

- \geq 2 close Geiger cells triggered
- Delayed alpha below 1.6 µs after electron
- \succ Short track (\leq 12 Geiger cells)

Additional BiPo selection:

Electron energy	>300 keV
e^{-}/α vertex distance in xy plane	≤6 cm
e^{-}/α vertex distance on z axis	≤10 cm
Delay between α and e ⁻ track	[300-1600] µs

Efficiency selection of 3.1%

From 10⁶ events simulated on the surface of the grounds wires

Dedicated radon injection runs

Radon source

- Emanation rate: 95 ± 5 Rn atoms per second
- Injected in the tracker at 5 L.min⁻¹

Objectives

- To optimize the BiPo selection criteria with high statistics
- To study the spatial radon uniformity in the detector
- To study the radon residence time in the detector

 \rightarrow Spatial Rn uniformity in the bulk of the tracker \rightarrow Small side effects and left-right asymmetry under study

Measurement of the Rn residence time with gas flow at 5 L.min⁻¹

Radon background

58 h of Rn background measurement in March 2024 at different gas flow

Time between e^- and α

 $\Delta t_{e-/\alpha}$ [µS]

Two Rn measurements performed at 5 and 10 L.min⁻¹

Gas flow

 \rightarrow Increasing the gas flow by a factor 2 decreases the BiPo rate by a factor $R \approx 2$ as expected

 \rightarrow First Rn background activity in current operation mode at 10 L.min⁻¹ : [10-15] mBq.m⁻³

New Radon activity updated soon with anti-radon factory, gas purification and nominal gas flow at 20 L.min⁻¹, stay tuned !

Antoine Lahaie, Mathis Granjon, Frédéric Perrot, Yegor Vereshchaka, on behalf of the SuperNEMO collaboration

