

ACCESS (Array of Cryogenic Calorimeters to Evaluate Spectral Shapes)

The ACCESS project aims to establish a novel technique to perform **precision measurements of forbidden β-decays**, which can serve as an important benchmark for **nuclear** physics calculations and represent a significant background in astroparticle physics experiments. ACCESS will operate a pilot array of cryogenic calorimeters based on natural and doped crystals containing β -emitting radionuclides. In this way, natural (¹¹³Cd and ¹¹⁵In) and synthetic isotopes (⁹⁹Tc) will be simultaneously measured with a common experimental technique. The array will also include further crystals optimised to **disentangle the different background sources**, thus reducing the systematic uncertainty. Here we present an overview of the ACCESS research program, and the first results on ¹¹⁵In β -decay.

Overview

Array of cryogenic calorimeters:

Table 1 List of the isotopes whose β -decay could be measured using the carrier crystal approach proposed by ACCESS (in **bold**) or natural crystals

Physics case	Isotope	Q_{β} (keV)	Half-life (year)	Natural abundance or target doping
Nuclear physics	⁹⁹ Tc	293.8	2.11×10^{5}	0.25 ppb
	¹¹³ Cd	316	7.70×10^{15}	13.47%
	¹¹⁵ In	496	4.41×10^{14}	95.7%
	⁹⁰ Sr	545.9	28.8	30 ppq
Background in v-physics and dark matter search	³⁹ Ar	565	269	0.15 ppt
	⁴² Ar	599	32.9	20 ppq
	²¹⁰ Bi	1161.2	0.014	²³⁸ U decay chain
Cosmic neutrino background detection	¹⁵¹ Sm	76.4	94.7	0.20 ppt
	²¹⁰ Pb	63.5	22.2	²³⁸ U decay chain

In the rightmost column, we report the isotopic abundance of naturally occurring isotopes, and the target activity of artificial isotopes in doped crystals. ²¹⁰Pb and 210 Bi belong to 238 U natural radioactive chain, so that their spectra can be measured with natural PbWO₄ exploiting the residual 210 Pb contamination

Paper

Experimental Measurement

- $7 \times 7 \times 7$ mm³ (1.9 g) indium iodine crystal
- Equipped with a $3 \times 3 \times 1 \text{ mm}^3 \text{ NTD}$
- Live-time of 140 h
- Permanent ²³²Th calibration source
- Energy threshold of 17 keV
- Energy resolution of 3.1 keV FWHM at 60 keV

Design study of an InI-based cryogenic calorimeter

□ ¹¹⁵In ²³⁸U - 50mK ⁴⁰K - bulk ²³²Th - bulk ²³²Th - 50mK ⁴⁰K - 50mK 238U - bulk 10² 10^{1} day 10^{0} $\overline{}$ keV 10^{-1} 10^{-2} and the second state of the second state of 10^{-3} and the state of the 10^{-4} 10^{-5}

Energy [keV]

Simulated energy spectra of the ¹¹⁵In β -decay (blue), and the different background components for a 7 mm-side InI crystal with NTD readout. As expected, the ¹¹⁵In β -decay is two orders of magnitude higher with respect to the limit on the ⁴⁰K background (solid red)

Simulated energy spectra of the ¹¹⁵In β -decay for different dimensions of the absorber (assuming s-NME = 2.0 and gA = 0.9, left). The larger is the crystal the lower is the difference between the template spectrum (black) and the simulated one.

Model

Signal rate (blue solid line), limit on background rate (blue-dashed line), and signal-to-background ratio (orange solid line) as a function of the absorber side.

The simulation for the 7 mm side crystal is repeated for five different values of g_A around the chosen reference value).

Measurement of the ¹¹⁵In β-decay with a InI-based cryogenic calorimeter

Results for the two fit methods and the three considered nuclear

models on the parameters of interest g_A , sNME and $T_{1/2}$.

 g_{A}

sNME

 $T_{1/2}/10^{14}$

 $\chi^2_{
m red}$

Theoretical templates correspondent to the best fit and the

matched fit approaches.

Theoretical energy spectrum of ¹¹⁵In β -decay.

The orange solid line corresponds to the best model fit

Lorenzo Pagnanini on behalf of the ACCESS collaboration

	0	$[\mathrm{fm}^3]$	[yr]	
Best fit				
ISM	$0.964\substack{+0.010\\-0.006}$	$1.75\substack{+0.13 \\ -0.08}$	5.26 ± 0.06	1.5
MQPM	$1.104\substack{+0.019\\-0.017}$	$2.88\substack{+0.49 \\ -0.71}$	5.26 ± 0.07	1.6
IBFM-2	$1.172\substack{+0.022\\-0.017}$	$0.81\substack{+0.52 \\ -0.24}$	5.25 ± 0.07	1.6
Matched				
ISM	$0.965\substack{+0.013\\-0.010}$	1.10 ± 0.03	5.20 ± 0.07	1.7
MQPM	$1.093\substack{+0.009\\-0.007}$	0.90 ± 0.03	5.05 ± 0.06	2.3
IBFM-2	$1.163\substack{+0.036\\-0.010}$	1.10 ± 0.03	5.28 ± 0.06	1.6

