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The goal is to determine the effective mass of the neutrino using the neutrinoless double-β (0νββ) decay of 

the nuclei. A problem was reported of a significant discrepancy in the running sum for the nuclear matrix 

element (NME) of the two-neutrino double-β (2νββ) decay between the shell model and QRPA 

calculations. The reliability of the calculation of the NME of the 2νββ decay is important because of the 

similarity of the 0νββ and 2νββ decays. This problem is solved in this study.

Possible change of two neutrons to two protons 

in a  nucleus emitting two electrons with neutrino 

exchange (neutrinoless double-β (0νββ) decay). 
This decay occurs, if the neutrino （ ν ） is a 

Majorana particle ( 𝜈 = ҧ𝜈 ), and the effective 

neutrino mass can be determined, see the 

equations below. Determination of the effective 

neutrino mass is one of the most important 

subjects in modern physics. 
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Why nuclei?

Because 𝐸(final state) < 𝐸(initial state) is necessary.

76Ge→76Se 130Te→130Xe 136Xe→136Ba
150Nd→150Sm 48Ca→48Ti 82Se→82Kr
96Zr→96Mo 100Mo→100Ru 110Pd→110Cd
116Cd→116Sn 124Sn→124Te and more

List of nuclei used in the experiments
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Principle to determine effective neutrino mass

𝑚𝜈 = ෍

𝑖=1,2,3

𝑈𝑒𝑖
2 𝑚𝑖

Theoretical calculation

Experimental 

measurement

U : Pontecorvo-Maki-Nakagawa-Sakata matrix 

𝑚𝑖: eigen mass (i =1,2,3)

Phase-space factor ← Wave functions of emitted 

                                      electrons

              NME    Nuclear wave functions

Approximation is indis-
pensable.

Accurate calculation  
more difficult than the 
phase-space factor

NME 
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The transition operator used in my calculation is

Final state,

ground state of 

nucleus(N–2,Z+2)

intermediate 

state,nucleus

(N–1,Z+1)

Initial state,

ground state of 

nucleus (N,Z )

Double-Gamow-Teller + Double-Fermi

Status:

 The calculated NMEs by various approximation 

methods and groups are distributed in a range of the 

min.-max. ratio of 2‒3. The NME cannot be obtained 

by experiment. Thus, examination and improvement 

of the calculation are essential.

Axial-vector 
current coupling

Neutrino potential

ID # 17

𝑚𝑒: electron mass

The problem

The large discrepancy in the running sum for 
2vββ NME ⨉ (gA)2 of 136Xe→136Ba in two calculations. 

The intermediate nucleus is 136Cs.

In calculation, effective value gA
eff is used for gA. 

SM: shell model; GCN and MC: interaction names.

QRPA: quasiparticle random-phase approximation.

The calculated MGT
(2v) (the right edge) are fitted to the 

exp. value.

GT: Gamow-Teller; the Fermi NME is negligible for 

the 2vββ decay.

A. Gando et al., PRL 122, 192501 (2019)

Variety of  calculations

My QRPA calculation

Skyrme + Coulomb + contact isovector (IV) and 

isoscalar (IS) pairing (pp, nn, and pn) interactions. 

p: proton; n: neutron

Gpn
IS: strength of the IS pn pairing interaction.

J. T., PRC 108, 014301 (2023) 

Menéndez Horoi Šimkovic Terasaki

Method SM QRPA

Variation of 

comp. of 

M(2v)

Small Large Large Small

The calculations of Menéndez et al. (SM) and 

Šimkovic et al. (QRPA) are those in the above figure 

(Gando et al.).

The calculation of Horoi et al. is in  

M. Horoi and A. Brown, PRL 110, 222502 (2013)

The cause of the discrepancy problem is not the 

theoretical differences between SM and QRPA.

Investigation of  cause

⦁ It turned out that a small decrease is obtained at the 

energy of the GT– giant resonance (GR–) at 12.5 MeV by 

increasing Gpn
IS.

 

⦁ The decrease in the running sum implies that the 

component of the 2vββ NME changes its sign at that 

energy. This behavior can be explained by the large 

strength of the interaction analytically under the separable 

approximation to the RPA. 

2vββ NME
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𝑂𝐵
† = ⋯ +

𝑁𝐵𝐶𝜇𝑖

𝜀𝜇𝑖 − 𝐸𝐵
𝑐𝜇

†𝑐𝑖 + ⋯ ,

𝐶𝜇𝑖: matrix element of the one-body operator used for the 

interaction of the separable approximation. The particle 

and hole states are denoted by 𝜇 and i. 

𝜀𝜇𝑖: particle-hole energy of main component of GR–.

𝐸𝐵: energy of intermediate state |𝐵〉. ഥ𝑀: mean value of 

      initial and final nuclear masses.

𝑁𝐵: normalization factor > 0.

When the attractive interaction strength is enhanced, all 

𝐸𝐵 are lowered and the one nearest to the 𝜀𝜇𝑖 of the GR– 

switches from 𝐸𝐵 < 𝜀𝜇𝑖 to 𝐸𝐵′ > 𝜀𝜇𝑖. This causes the sign 

change of 𝐵(𝐺𝑅−) 𝝈𝜏− 𝐼 . 𝑂𝐵𝐺𝑅−
𝐹† 𝐹 does not have this 

component in the single-Slater approximation; see the 

figure below. Thus, the possibility of the sign change of 

𝐹 𝝈𝜏− 𝐵(𝐺𝑅−) is low. 

GT–: GT transition from n to p.; GT+: that from p to n.

The significant decrease in the running sum at the GT–

GR implies that the interaction is stronger than that of 

calculations with less decrease.

The cause of the problem is the difference in the 

interaction strength.  

Check of my interaction strength 

Exp. data and calculation of  gA
2  x GT‒ strength

Excitation energy of 136Cs

Exp. data from D. Frekers et al., Nucl. Phys. A 916, 219 (2013);     

J.T. used gA
 = 0.49.eff

to reproduce the exp. half-life of 

the 2vββ decay

136Xe(3He,t )136Cs and  e capture 

The energy dependence of  the strength shows the 

validity of  my interaction.

gV: vector current coupling 

      = 1
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