

A complete PMT optical model for JUNO

Yuhan Ren on behalf of the JUNO collaboration Institute of High Energy Physics renyh@ihep.ac.cn

Introduction

- > The main goal of JUNO is to determine the neutrino mass ordering.
 - desired energy resolution: 3%@1 MeV
- > 17,612 20" photomultiplier tubes (PMTs) in central detector
 - 4,997 HPK dynode PMTs and 12,615 NNVT MCP PMTs
 - high photon detection efficiency (PDE) (~29%) [1]
 - large photocathode coverage (~75%)
- > An accurate PMT optical model is critical for building a precise simulation and understanding the energy response.
 - PDE angular and spectral responses in water
 - PDE non-uniformity in a single PMT or among PMTs

Input data for model

- Refractive index (n) of ARC \geq Refractive index (n,k) of PC
 - data from [2]
 - dispersion relation

• data from [2, 3]

PMT optical model

- a. Fit $R(\theta)$ and $PDE(\theta)$ to obtain thickness (d) of anti-reflective coating (ARC) and photocathode (PC)
 - \succ assume d(θ) is a quadratic function θ : zenith angle
- b. Simulate photon absorption and distinguish contributions from incident and transmitted photons [2]
 - transfer matrix method (TMM)
 - reflectance (R)
 - transmittance (T) \bullet
 - absorbance (A) \bullet
 - \succ GEANT4
 - track the transmitted photons inside PMTs
- c. Obtain collection efficiency (CE) [2]
 - interpolation based on reference points
 - solve the equations $\beta_{1,n}$ PDE_1 (CE_1) $eta_{1,1}$ $ext{PDE}(\lambda, \alpha) = \sum a_j(\lambda, \alpha) \cdot
 ho_j(\lambda) \cdot ext{CE}_j$ PDE_n

- calculate escape factor = QE/A
- constrain PDE spectral dependance

- \succ Averaged PDE and PDE(θ) (PDE uniformity)
 - tested in container system and scanning station respectively [1]
- \succ R(θ)

- tested at 4 zenith angles
- 8 degree incident angle at 415 nm

- \succ Generate a random R(θ) or PDE(θ) curve sample from data distribution under averaged PDE constraint for PMTs
- d. Simulate non-uniform PMT PDE with angular and spectral dependence using the above equation

Simulate photon absorption position of PDE(θ)

HPK

External medium

PMT glass

Photocathode

PMT vacuum

ARC

.....

.....

without R or PDE uniformity test

Results

Summary

- > A complete PMT optical model for JUNO is established.
- Non-uniform PMT PDE can be simulated with angular and spectral responses.
- The impact of PMT PDE non-uniformity on JUNO energy resolution will be evaluated.

References

[1] A. Abusleme et al., Mass testing and characterization of 20-inch PMTs for JUNO. Eur. Phys. J. C 82, 1168 (2022). [2] Y. Wang et al., A new optical model for photomultiplier tubes, Eur. Phys. J. C 82, 329 (2022). [3] S.W. Harmer et al., Variation in optical constants between photocathodes. Nucl. Instrum. Methods A 564(1), 439–450 (2006).