

Bayesian Fit for the NOvA Three Flavor Oscillation Analysis

Ben Jargowsky¹ and Liudmila Kolupaeva² (for the NOvA Collaboration)

¹University of California, Irvine and ²JINR

FERMILAB-POSTER-24-0090-V

The NOvA Experiment

The NOvA experiment is a long baseline neutrino oscillation experiment utilizing the world's most powerful ν_{μ} ($\bar{\nu}_{\mu}$) beam—the NuMI beam at Fermilab.

- Two functionally identical detectors (Far and Near)
- Fine-grained, low-Z liquid scintillator calorimeters.
- 14 mrad off the NuMI beam axis.

- Physics motivations for studying ν_e $(\bar{\nu_e})$ appearance and ν_{μ} $(\bar{\nu}_{\mu})$ disappearance:
- Determine Neutrino Mass Hierarchy.
- Probe δ_{CP} violating phase.

Bayes theorem in practice:

 $P(\theta|Data) = \frac{f(\theta)\mathcal{L}(data|\theta)}{\int f(x)\mathcal{L}(data|x)dx}$

MCMC is a method to efficiently sample from a distribution by randomly choosing a new sample point based on the last point.

NOvA has implemented two different MCMC methods to its analysis:

- "ARIA": MR^2T^2 Algorithm The Metropolis-Rosenbluth-Rosenbluth-Teller-Teller algorithm
- "Stan": Hamiltonian Monte Carlo

(image taken from L. Jaewook et. al. (2015). Energies. 10.3390/en8065538.)

We choose uniform priors for the oscillation parameters, except $sin^2 2\theta_{13}$, which is constrained with measurements from reactor experiments. NOvA's Bayesian MCMC Fitter was also used for the first NOvA+T2K analysis (see poster 463).

ARIA named after

Arianna Rosenbluth

Markov Chain Monte Carlo (MCMC) for Bayesian Analysis

Stan named after Stanislaw Ulam

Mixing Angles

Without including an external constraint on θ_{13} , we can make a measurement of θ_{13} with NOvA data alone, showing consistency with reactor experiments' measurements. Here, the prior for $sin^2 2\theta_{13}$ is uniform.

NOvA prefers the upper octant, with 69% for the 1D reactor constraint. Without reactor constraint the octant preference changes.

New NOvA 3Flavor Results in 2024

This year NOvA presents new three-flavor results obtained with 26.6 $\times 10^{20}$ POT with ν beam and 12.5 $\times 10^{20}$ POT with $\bar{\nu}$ beam (+95.6% more statistics with ν beam than in 2020). For more details see J. Wolcott's plenary talk. Accompanying this result, there is a Frequentist result presented at this conference, see poster 456.

	Neutrino beam			Antineutrino beam	
	$ u_{\mu}$	$ u_e$	$ u_e \mathrm{LE}$	$ar{ u}_{\mu}$	$ar{ u}_e$
Signal	398.2	121.6	2.9	96.7	18.2
Background	11.3	54.9	6.8	1.7	12.2
Total pred	409.5	176.5	9.7	98.4	30.4
Observed	384	169	12	106	32
P-values:	0.68	0.65	0.82	0.45	0.20

All v_e candidates

δ_{CP} and Mass Ordering

NOvA Preliminary

NO disfavors max CP violating points $\frac{\pi}{2}$ and $\frac{3\pi}{2}$ at >1 and >2 σ , respectively.

- IO rejects CP conserving points, as well as $\frac{\pi}{2}$, at >3 *o*.
- We apply the constraint to $sin^22\theta_{13}$ from Daya Bay two ways:
- As a prior for $sin^2 2\theta_{13}$ only (the "1D" reactor constraint)
- As a prior for $sin^22\theta_{13}$ vs Δm^2_{32} from Daya Bay's 2D surface (the "2D" reactor constraint)
- With the 1D constraint, we have 76% NO, and with 2D, we have 87% NO.

Result Comparisons with Other Experiments

This result gives the most precise individual measurement of $|\Delta m_{32}^2|.$

NOvA and T2K favor different values of δ_{CP} . New NOvA results are consistent with previous ones.

NOvA Preliminary

Neutrino-2024, Milan (June 16-22)

bjargows@uci.edu, kolupaeva@jinr.int