Results from the MINOS+ Experiment

Anna Holin (RAL-STFC) and Jennifer Thomas (UCL), with Petr Mánek, Mustafa Özkaynak and Alex Sells (UCL) on behalf of the MINOS+ Collaboration

The MINOS+ Experiment in the NuMI Beam

The NuMI Beam [1]:

- 120 GeV protons from the Main Injector impact on a graphite target
- Two magnetic horns focus secondary hadrons which decay into neutrinos in the decay pipe
- The absorber and the subsequent rock absorb the remaining hadrons but neutrinos travel towards the detectors

The MINOS+ Experiment [2]:

 MINOS+ was the continuation of the on-axis 735km baseline MINOS experiment and took data from 2013-2016 seeing a medium energy (ME) beam; MINOS+ saw large statistics on-axis NuMI Beam

Hadron Production Parametrisation: $\left[\mathrm{Bp_{T}} + \mathrm{Cp_{T}^{2}} \right] \mathrm{e}^{-\mathrm{Dp_{T}^{E}}}$ $\overline{\mathrm{dxdp_T}}$

NuMI Beam Fits

- NuMI beam flux (G4NuMI) shows disagreement between data and MC at peak for NuMI neutrino experiments
- Hadron production and horn focusing effects are fit to MINOS ND Data

Stage 1: Parametrise hadron production in flux MC (G4NuMI) (improvements over [3])

- Flux : quadratic and new exponential term improve prediction for pT range 0 < pT < 1.4GeV/c
- Parametrisation of secondary functions (B, C, D, E) uses an empirical approach to describe flux MC • Both LE and ME MC treated separately

- hadron prod parametrisation π +

- MINOS took data in a low energy configuration from 2005-2012
- MINOS(+) used a Near Detector (ND) at Fermilab and a Far Detector (FD) in the Soudan Mine in Minnesota, baseline 730km
- The ND detected the neutrinos before oscillations, and the FD after oscillations

New MINOS+ Analysis

- Effect of MEC studied and shown to be negligible
- Effect of beam weighting studied on fake data sample
- Many universes analysis of systematic/statistical effects and their impact on fit result
- Covariance matrix for systematics

Stage 2: Fit to Near Detector

- Hadron prod is fit together with horn focusing parameters Horn current scale prefers -10kA.
- Higher than 4kA error on horn current, assumed to account for any focusing effects
- 10kA consistently seen both for the low energy beam (2005-2012) and the medium energy beam (2012-2016) New beam fit for both LE Horn **On, Forward and Reverse Horn** Current

The example

(right) has the

shown here

parameters:

Systematic Error Covariance

Reconstructed F

Covariance matrix built for 4 dominant systematic errors Replaces penalty term extrapolation approach from previous analyses Shown to be robust in universe studies

MINOS+ $sin^2(\theta_{23})$ Result

New MINOS+ results on muon neutrino disappearance

Incorporate Δm_{32}^2 value constrained by Daya Bay [4,5] and RENO [6,7] and independent of θ_{23} which is measured by MINOS+

Constraint A uses the Daya Bay result from [4]

$$\Delta m_{32}^2 = 2.51 \times 10^{-3} \pm 0.05 eV^2$$

$$\Delta m_{32}^2 = -2.61 \times 10^{-3} \pm 0.05 eV^2$$

Constraint B uses [5]. A weighted average is calcuated in combination with RENO [7].

$$\Delta m_{32}^2 = 2.70 \times 10^{-3} \pm 0.09 eV^2$$

$$\Delta m_{32}^2 = -2.80 \times 10^{-3} \pm 0.09 eV^2$$

Separate runs fit, DstBaseline

Combined runs fit, DstBaseline

Prediction

- Data

Resolution bins

Resolution binning has been implemented for the ME beam samples. Previously this was only done for the LE beam samples. This adds additional sensitivity to the analysis of 2.5x10²¹ POT

High Energy v_e Appearance Analysis

3σ

Inverted Hierarchy disfavoured at 2 σ With constraint A, respective numbers are 2.7 σ and 1.5 σ

Best Fit Values Constraint B: Constraint A: $\sin^2 \theta_{23} = 0.37 \pm 0.04$ $\sin^2 \theta_{23} = 0.67 \pm 0.04$ $\Delta m_{32}^2 = 2.60 \times 10^{-3} \pm 0.10 eV^2$ $\Delta m_{32}^2 = 2.50 \times 10^{-3} \pm 0.06 eV^2$

[1] P. Adamson et al., NIM A, Vol. 806, 279-306 (2016) [6] Bak, G. et al. (RENO), Phys. Rev. Lett. 121(20), [2] P.Adamson et al., Phys. Rev. Lett. 125 (2020) 13, 201801 (2018) 131802.

[3] P. Adamson et al. (MINOS), Phys. Rev. D 77, 072002 (2008) [4] F.P. An et al. (Daya Bay), Phys. Rev. Lett. 130, 161802 (2023) [5] F.P. An et al. (Daya Bay), arXiv preprint, arXiv:2406.01007 (2024)

[7] Shin, C. (RENO), PoS ICHEP2020(177) (2020) [8] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 100001 (2016) [9] V Hewes, Fermilab Joint Experimental-

Theoretical Physics Seminar, January 2023

The world's low-energy, long-baseline v_{e} appearance data is consistent with 3-flavour model.

High energy ($6 < E_v < 12$ GeV), long baseline v_p appearance is largely unconstrained. HE configuration of MINOS+ probes anomalous v_e appearance in the Far detector.

- Using extrapolation, we compare best fit world parameters [8] to MINOS+ predictions
- Medium-purity sample (right) agrees with 3-flavour model across all energies
- No clear discrepency with expectation in the High-purity sample (left) at higher energy

• PISCES framework [9] to be used to quantify degree of consistency with 3-flavour oscillations

Background artwork by Gustave Doré - http://gutenberg.kk.dk/8/7/8/8781/8781-h/8781h.htm, Public Domain, https://commons.wikimedia.org/w/index.php?curid=80297