

Daya Bay oscillation results with neutron capture by hydrogen

Zhiyuan Chen, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing * chenzhiyuan@ihep.ac.cn (on behalf of the Daya Bay collaboration)

Daya Bay Reactor Neutrino Experiment [1]

Daya Bay Reactor Neutrino Experiment was designed to precisely measure the neutrino mixing angle θ_{13} .

- Sources: electron antineutrinos from Daya Bay and Ling Ao reactors
- Near-far relative measurement
 - ► Near: monitor antineutrino flux
 - ➢ Far: measure the oscillation
- Antineutrino detector (AD):
 - Gadolinium-doped liquid scintillator (GdLS): target volume
 - Liquid scintillator (LS): catcher and target volume

Challenges

- Large accidental background
- Significant energy leak •

Selection criteria

- PMT flasher cut & muon veto
- Prompt energy cut: (1.5, 12) MeV
- Delayed energy cut: $(\mu 3\sigma, \mu + 3\sigma)$ MeV
- Neutron capture time cut: (1, 1500) µs
- Distance-time cut: $DT = dr + dt \cdot v < 1 \text{ m}$ •
- Multiplicity cut

 $\mathbf{\Phi}$ µ and $\mathbf{\sigma}$ are the mean and resolution of nH delayed peak

- ➤ Mineral oil (MO): radial shield
- Water pool for shielding and muon veto
- Measure θ_{13} via neutron capture on gadolinium (nGd) or hydrogen (nH)

Backgrounds Analysis

- Accidentals: occasionally satisfied \bullet IBD criteria
 - \succ nearly double of IBDs at far site
 - \succ validated by distance and time distributions
- **Fast neutrons**: coincidence of fast neutron scatters and its capture

Uncertainty and side-by-side comparison

	Uncertainty (%)
Target protons	0.11
Prompt energy	0.13
(1, 1500) <i>µs</i>	0.10
Delayed energy	0.20
Coincidence DT	0.20
Combined	0.34

- Correlated uncertainties cancelled
- Uncorrelated uncertainties estimated by the variation among 8 ADs.

- ²⁴¹Am-¹³C: neutrons from calibration source
- **Radiogenic neutron**: neutrons from peripheral materials [3]
 - > Sources
 - □ ²³⁸U spontaneous fission
 - \square (α ,n) reaction of boron and fluorine
 - ➤ Mass ratio of boron measured with disassembled PMTs
- > Study with simulation

Energy Model

ensure relative measurement

Results of Oscillation Analysis[4]

- Oscillation fitting
 - Rate-only: total deficit of IBD rate at each AD
 - Rate+shape: deficit of IBD rate at different neutrino energy range
- Two independent analysis for careful cross check
- Using 1958-days data, consistent with nGd results (2.8% precision) [5]

 $\sin^2 2\theta_{13} = 0.0759 \pm 0.0050$ + nGd $\Delta m_{32}^2 = (2.72 \pm 0.15) \times 10^{-3} \text{ eV}^2$

References

[1] F. P. An et al. (Daya Bay), Nucl. Instrum. Meth. A 811, 133 (2016). [2] F. P. An et al. (Daya Bay), Phys. Rev. D 95, 072006 (2017). [3] Z. Y. Chen et al., Phys. Rev. D 104, 092006 (2021). [4] F. P. An et al. (Daya Bay), arXiv:2406.01007 [hep-ex] (2024). [5] F. P. An et al. (Daya Bay), Phys. Rev. Lett. 130, 161802 (2023).

