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Introduction

• Neutrino oscillation is a
quantum mechanical
phenomenon that arises due to
the coherent superposition of
neutrino mass states.
However, if neutrino as a
quantum system is coupled to
an environment, the coherence
between two or more
propagating states may be lost
leading to the suppression of
flavour oscillations.

• Such type of
environmentally induced
quantum decoherence (QD) in
neutrino states might emerge
from quantum gravity effects
or space-time “foam” which
acts as dissipative sources
and can modify the
ν-oscillation probability in
various ways [1].

QD: Formalism

The time evolution of neutrinos in
an open quantum system is given by

∂ρ(t)
∂t

= −i[H, ρ(t)] + D[ρ(t)] ,

(1)
where H is the neutrino Hamilto-
nian which can be written as
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. (2)

The effect of decoherence is given
by the dissipator matrix D which
on imposing relevant physical con-
ditions can be parametrized as

D = −diag(Γ21, Γ21, 0, Γ31, Γ31, Γ32, Γ32, 0) .

(3)
The solution to the Eq.1 is given by

ρα
ij(x) = Ũ∗

αiŨαje
−(Γij+i∆̃ij)x (4)

and the oscillation probabilities in
the presence of decoherence read as

P (να → νβ) = Tr
ρα(0)ρβ(x)



(5)
Here, Ũ is the modified PMNS ma-
trix in matter and ∆̃ij = ∆m̃2

ijL

4E
,

with ∆m̃2
ij being the mass squared

differences in matter.

• L = 360 km, Water Cherenkov
detector of fiducial volume 538
kt and 5 years run-time of
neutrino + 5 years of
antineutrino [2].

Oscillation Probability including Decoherence

P (να → νβ) = δαβ − 2 ∑
i>j

Re
[
Ũ∗

αiŨβiŨβjŨ
∗
βj

] 1 − cos
2∆̃ij

 e−ΓijL
 + 2 ∑

i>j
Im

[
Ũ∗

αkŨβkŨβjŨ
∗
βj

]
sin

2∆̃ij

 e−ΓijL ,

QD induces terms similar to damping phenomena of the
form e−ΓijL in the oscillation probability.

Fig.: Effect of Γ21 and Γ32 on the appearance probability for the ESSnuSB.

• The Pµe probability is mostly affected by Γ21 in comparison to Γ32.
• The effect of Γ21 is significant when δCP is −90◦.

Important Analytical Formulae

For maximal CPV, the relevant contributing terms for Γ21 and Γ32 are
|P CP−odd

µe | ∝ |2α∆31(Γ21L − 2 sin2 ∆31) − Γ21L sin 2∆31| .

|P CP−odd
µe | ∝ |Γ32L cos 2∆31 + 2 sin2 ∆31| .

For δCP = 0, 180◦, expression for CPV precision is given by:
∆δCP ∝ 1

|2α∆31(Γ21L − 2 sin2 ∆31) − Γ21L sin 2∆31|
; 1
|α∆31Γ32L cos 2∆31 + 2α∆31 sin2 ∆31|

.

On the other hand, for maximal CP violation, we obtain
∆δCP ∝ 1

|Γ21L(cos 2∆31 + cos 2θ12) + 2α∆31 sin 2∆31|
; 1
|α∆31(1 − Γ32L) sin ∆31|

.

Bounds on Γ21 and Γ32

Other experimental bounds at
90% C.L. are [3, 4]
Γ32 = Γ21 < 9.4 × 10−24 GeV [MINOS/MINOS+],

Γ21 < 1.2 × 10−23 GeV [DUNE],
Γ32 < 4.7 × 10−24 GeV [DUNE] .

CPV Sensitivity &
Precision
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For small Γ21, the sensitivity first
slightly decreases and when the de-
coherence term becomes dominant,
the relevant probability increases
along with Γ21, improving the sen-
sitivity.
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Key Takeaways

• For the first time, we explore the
sensitivity of ESSnuSB to
constrain Γ21 and Γ32 [5].

• We find that, the bounds on Γ21
are better than
MINOS/MINOS+ and DUNE,
while constraint on Γ32 is
competitive.

• ESSnuSB measurement of δCP
remains robust for Γij in the
range [10−24, 10−21] GeV.

• For the case of maximal CP
violation, an uncertainty below
10◦ can be maintained for
Γij ≳ 10−22 GeV.

• Interesting correlations have
been observed among θ23 and
Γij.
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