ID #40; arXiv:2404.17559 amann16.iitr@gmail.com



# Investigating Quantum Decoherence in v-Oscillation at ESSnuSB Experiment



 $\Gamma^{\text{true}} = 6.1 \times 10^{-23} (\text{GeV})$ 

+ 1σ>

 $\Gamma_{21}^{\text{true}} = 1.2*10^{-23}, \Gamma_{32}^{\text{true}} = 7.7*10^{-25} (\text{GeV})$ 

 $\Gamma_{32} (10^{-25} \text{GeV})$ 

 $3\sigma, \theta_{23}^{true} = 42.2^{\circ}$ 

(+)<sup>3</sup>σ

Author: Aman Gupta <sup>1,2</sup>; Presenter: Monojit Ghosh <sup>3</sup> on behalf of the ESSnuSB collaboration <sup>1</sup>Saha Institute of Nuclear Physics, Kolkata, India, <sup>2</sup>HBNI, Mumbai, India, <sup>3</sup>Ruđer Bošković Institute, Zagreb, Croatia

#### Introduction

• Neutrino oscillation is a quantum mechanical phenomenon that arises due to the coherent superposition of neutrino mass states. However, if neutrino as a quantum system is coupled to an environment, the coherence between two or more propagating states may be lost leading to the suppression of flavour oscillations. • Such type of environmentally induced quantum decoherence (QD) in neutrino states might emerge from quantum gravity effects or space-time "foam" which acts as dissipative sources and can modify the  $\nu$ -oscillation probability in various ways [1].

#### **Oscillation Probability including Decoherence**

*Correlations* 

3σ, 2% syst. \_\_\_\_\_ 3σ, 5% syst. \_\_\_\_\_

3σ, 10% syst.



## **QD:** Formalism

The time evolution of neutrinos in an open quantum system is given by



For maximal CPV, the relevant contributing terms for  $\Gamma_{21}$  and  $\Gamma_{32}$  are  $|P_{\mu e}^{\text{CP-odd}}| \propto |2\alpha \Delta_{31}(\Gamma_{21}L - 2\sin^2 \Delta_{31}) - \Gamma_{21}L\sin 2\Delta_{31}|.$  $|P_{\mu e}^{\rm CP-odd}| \propto |\Gamma_{32}L\cos 2\Delta_{31} + 2\sin^2 \Delta_{31}|.$ 

For  $\delta_{CP} = 0,180^{\circ}$ , expression for CPV precision is given by:  $\Delta \delta_{\rm CP} \propto \frac{1}{|2\alpha \Delta_{31}(\Gamma_{21}L - 2\sin^2 \Delta_{31}) - \Gamma_{21}L\sin 2\Delta_{31}|}; \frac{1}{|\alpha \Delta_{31}\Gamma_{32}L\cos 2\Delta_{31} + 2\alpha \Delta_{31}\sin^2 \Delta_{31}|}.$ On the other hand, for maximal CP violation, we obtain  $\Delta \delta_{\rm CP} \propto \frac{1}{|\Gamma_{21}L(\cos 2\Delta_{31} + \cos 2\theta_{12}) + 2\alpha \Delta_{31} \sin 2\Delta_{31}|}; \frac{1}{|\alpha \Delta_{31}(1 - \Gamma_{32}L) \sin \Delta_{31}|}.$ 



54



Key Takeaways

where H is the neutrino Hamiltonian which can be written as



The effect of decoherence is given by the dissipator matrix D which on imposing relevant physical conditions can be parametrized as

 $D = -\text{diag}(\Gamma_{21}, \Gamma_{21}, 0, \Gamma_{31}, \Gamma_{31}, \Gamma_{32}, \Gamma_{32}, 0)$ The solution to the Eq.1 is given by  $\rho^{\alpha}_{ij}(x) = \tilde{U}^*_{\alpha i} \tilde{U}_{\alpha j} e^{-(\Gamma_{ij} + i\tilde{\Delta}_{ij})x}$ (4)

and the oscillation probabilities in

# Bounds on $\Gamma_{21}$ and $\Gamma_{32}$



### **CPV Sensitivity** & Precision





- For the first time, we explore the sensitivity of **ESSnuSB** to constrain  $\Gamma_{21}$  and  $\Gamma_{32}$  [5].
- We find that, the bounds on  $\Gamma_{21}$ are better than MINOS/MINOS+ and DUNE, while constraint on  $\Gamma_{32}$  is competitive.
- ESSnuSB measurement of  $\delta_{\rm CP}$ remains robust for  $\Gamma_{ij}$  in the range  $[10^{-24}, 10^{-21}]$  GeV.
- For the case of maximal CP violation, an uncertainty below  $10^{\circ}$  can be maintained for  $\Gamma_{ij} \gtrsim 10^{-22} GeV.$
- Interesting correlations have been observed among  $\theta_{23}$  and  $\prod_{i=1}^{n}$

the presence of decoherence read as

 $P(\nu_{\alpha} \to \nu_{\beta}) = \operatorname{Tr}\left[\rho^{\alpha}(0)\rho^{\beta}(x)\right]$ C

Here, U is the modified PMNS matrix in matter and  $\tilde{\Delta}_{ij} = \frac{\Delta \tilde{m}_{ij}^2 L}{4E}$ , with  $\Delta \tilde{m}_{ij}^2$  being the mass squared differences in matter.

•  $L = 360 \ km$ , Water Cherenkov detector of fiducial volume 538 kt and 5 years run-time of neutrino + 5 years of antineutrino [2].

#### References

[1] E. Lisi, A. Marrone, and D. Montanino. Probing possible decoherence effects in atmospheric neutrino oscillations. Phys. Rev. Lett., 85:1166-1169, 2000.

[2] A. Alekou et al. The European Spallation Source neutrino super-beam conceptual design report. Eur. Phys. J. ST, 231(21):3779–3955, 2022. [3] Valentina De Romeri, Carlo Giunti, Thomas Stuttard, and Christoph A. Ternes. Neutrino oscillation bounds on quantum decoherence. JHEP, 09:097, 2023.

[4] G. Balieiro Gomes, D. V. Forero, M. M. Guzzo, P. C. De Holanda, and R. L. N. Oliveira. Quantum Decoherence Effects in Neutrino Oscillations at DUNE. Phys. Rev. D, 100(5):055023, 2019. [5] J. Aguilar et al. Decoherence in Neutrino Oscillation at the ESSnuSB Experiment. 4 2024.