

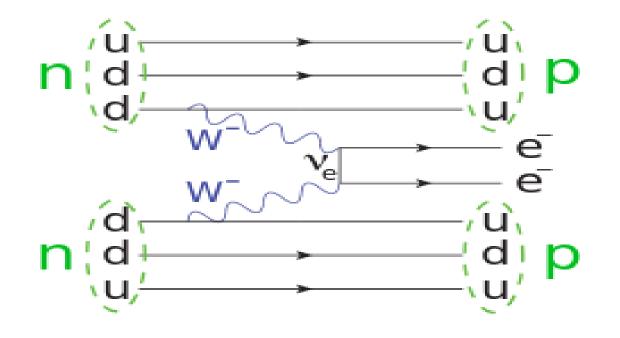
CP violation due to a Majorana phase in two flavor neutrino oscillations with decays

Akhila Kumar Pradhan¹, Khushboo Dixit^{1†}, S. Uma Sankar¹

¹Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India [†]Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg

Introduction

- The fundamental nature of most intriguing particle neutrinos, whether they are Dirac or Majorana fermions, is still an open question.
- To probe **Majorana nature**, many experiments looking for signals of neutrinoless double beta decay.



Oscillations with decay-Hamiltonian

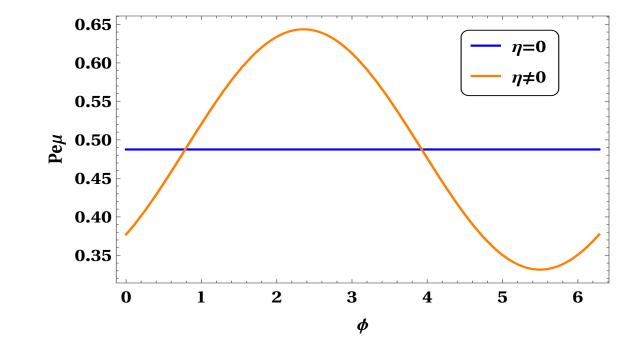
The general decay-Hamiltonian $\mathcal{H} = M - i\Gamma/2,$

$$M = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}, \quad \Gamma/2 = \begin{pmatrix} b_1 & \frac{1}{2}\eta e^{i\xi} \\ \frac{1}{2}\eta e^{-i\xi} & b_2 \end{pmatrix}$$

System of two particles which can oscillate into each other, these matrices can have off-diagonal terms, as in the case of neutral meson system.

Results and Discussions

When decay eigenstates are not aligned with the mass eigenstates (off-diagonal term in Γ), probability expressions are sensitive to Majorana phase ϕ .



Objective of our work

- Well established fact: Vacuum oscillation probabilities do not depend on the Majorana phases.
- But oscillation probabilities depend on Majorana phases, with an **off-diagonal decoherence** term and also these probabilities are CP-violating.

F.Benatti et al. Phys.Rev.D 64,085015

The question we ask: "what are the other possibilities under which the Majorana phases appear in neutrino oscillation probabilities and lead to *CP*-violation?".

Oscillations with Decoherence

- The matrix Γ needs to be positive semi-definite, *i.e.*, **non negative** \implies $b_1, b_2 \ge 0$ and $\eta^2 \le 4b_1b_2$.
- The mass eigenstates are **not** decay eigenstates ($\eta \neq 0$) and evolution equation:

 $i\frac{d}{dt}\nu_{\alpha}(t) = \left[\frac{(a_1 + a_2)}{2}\sigma_0 - \frac{(a_2 - a_1)}{2}O\sigma_z O^T\right]$ $-\frac{i}{2}(b_1+b_2)\sigma_0 - \frac{i}{2}OU_{ph}(\vec{\sigma}.\vec{\Gamma})U_{ph}^{\dagger}O^T \Big]\nu_{\alpha}(t)$ where $\vec{\Gamma} = [\eta \cos \xi, -\eta \sin \xi, -(b_2 - b_1)].$

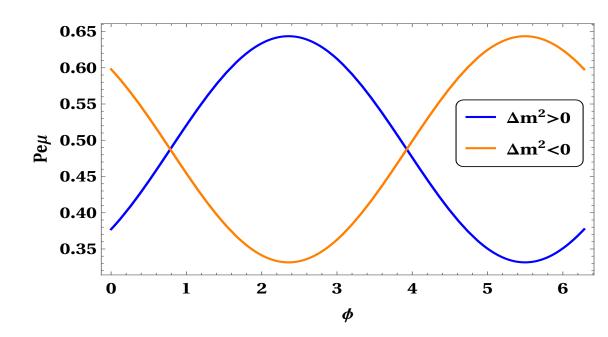
• Since σ_x and σ_y do not commute with U_{ph} matrix, the Majorana phase ϕ remains in the evolution equation.

Oscillation Probability

- Time evolution operator in the mass eigenbasis is $\mathcal{U} = e^{-i\mathcal{H}t}$, can be expanded in the basis spanned by σ_0 and Pauli matrices.
- n_{μ}

- Presence of η violates the equalities $P_{\mu\mu} = P_{ee}$ and $P_{\mu e} = P_{e\mu}$ that we see in the case of two flavour vacuum oscillations.
- The terms with \mathcal{B} , present in oscillation probabilities, have opposite signs for the two cases: $a_2 > a_1$ ($m_2 > m_1$) and $a_2 < a_1$ ($m_2 < m_1$).

 \implies Oscillation probability (Not the survival probability) is sensitive to mass hierarchy.



Different types of *CP*-violation are possible:

- \rightarrow due to the Majorana phase ϕ which we call CP-violation in mass.
- \rightarrow due to the phase ξ of Γ_{12} which we call CP-violation in decay.
- \rightarrow most general possibility is $\eta \neq 0, \xi \neq 0$ and

• Neutrino mass eigenstates ν_i mix via a unitary matrix with flavour states ν_{α} as

 $\nu_{\alpha} = U \ \nu_i = O \ U_{ph} \ \nu_i$ where, $\nu_{\alpha} = (\nu_e \quad \nu_{\mu})^T, \nu_i = (\nu_1 \quad \nu_2)^T$ and $O = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \qquad U_{ph} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$

The evolution of the neutrino considered as an **open system**, can be expressed by the Lidbland-Kossakowski master equation

$$\frac{d\rho}{dt} = -i[H_{eff}, \rho(t)] + D[\rho(t)]$$

$$\begin{pmatrix} \dot{\rho_1}(t) \\ \dot{\rho_2}(t) \\ \dot{\rho_3}(t) \end{pmatrix} = \begin{pmatrix} -\gamma & \Delta - \alpha & 0 \\ \Delta - \alpha & -\gamma & 0 \\ 0 & 0 & -\gamma_3 \end{pmatrix} \begin{pmatrix} \rho_1(t) \\ \rho_2(t) \\ \rho_3(t) \end{pmatrix}$$

$$P_{\mu e} = \frac{1}{2} \left(1 - e^{-\gamma t} \cos^2(2\theta) - e^{-\gamma t} \sin^2(2\theta) \right)$$
$$\left[\cosh(\Omega_{\alpha} t) + \frac{\alpha \sin(2\phi) \sinh(\Omega_{\alpha} t)}{\Omega_{\alpha}} \right]$$

$$\equiv (n_0, \vec{n}), n_{\mu} = Tr[(-i\mathcal{H}t).\sigma_{\mu}]/2.$$
$$\mathcal{U} = e^{n_0} \bigg[\cosh n \ \sigma_0 + \frac{\vec{n}.\vec{\sigma}}{n} \sinh n \bigg],$$
$$n = \sqrt{n_x^2 + n_y^2 + n_z^2}$$

 Oscillation probabilities can be obtained as $P_{\alpha\beta} = |(\mathcal{U}_f)_{\alpha\beta}|^2, \ \mathcal{U}_f = U\mathcal{U}U^{-1}$ • In the limit $b_1 = b = b_2$ and $\eta \ll |a_2 - a_1|$,

$$P_{ee} = e^{-2bt} \left(P_{ee}^{\text{vac}} - \eta \cos(\xi - \phi) \mathcal{A} \right)$$

$$P_{\mu\mu} = e^{-2bt} \left(P_{\mu\mu}^{\text{vac}} + \eta \cos(\xi - \phi) \mathcal{A} \right)$$

$$P_{e\mu} = e^{-2bt} \left(P_{e\mu}^{\text{vac}} + 2\eta \sin(\xi - \phi) \mathcal{B} \right)$$

$$P_{\mu e} = e^{-2bt} \left(P_{\mu e}^{\text{vac}} - 2\eta \sin(\xi - \phi) \mathcal{B} \right).$$
where,
$$\mathcal{A} = \frac{\sin(2\theta) \sin\left[(a_2 - a_1) t \right]}{(a_2 - a_1)}$$

$$\mathcal{B} = \frac{\sin(2\theta) \sin^2\left[\frac{1}{2}t(a_2 - a_1) t \right]}{(a_2 - a_1)}$$

 $\phi \neq 0$. In this case, we have CP-violation due to both mass and decay provided $\phi \neq \xi$.

In two special cases, when $\phi = \xi$ or when $\phi = \xi$ $\xi = 0$, there is **no** *CP***-violation** even if $\eta \neq 0$. In such a situation, the flavour conversion probabilities are insensitive to off-diagonal elements of Γ but the flavour survival probabilities do depend on them.

Observational effects

- Supernova 1987A, $\tau_{\nu} \geq 5.7 \times 10^{5} \text{s} (m_{\nu}/\text{eV})$ $\implies \Gamma_{\nu} \equiv b \approx 10^{-21} \text{ eV for } m_{\nu} \sim 1 \text{ eV}$ J.A.Frieman et al. Phys.Lett.B 200(1988)
- The new effects considered in this work are of order $\eta/(a_2 - a_1) = \eta E/\Delta m^2$. These effects are of order 10% for $\Delta m^2 \approx 10^{-4} \, \mathrm{eV}^2$ if $E \approx 10^7$ GeV.
- Ultra high energy neutrinos from astrophysical **sources** provide a platform to study the effect.

where, α is the off-diagonal decoherence term, $\Delta = \frac{\Delta m^2}{2E}$ and $\Omega_{\alpha} = \sqrt{\alpha^2 - \Delta^2}$.

 \implies The Majorana phase appears in probability expression due to decoherence as long as the **off-diagonal term** $\alpha \neq 0$.

$\Delta_{CP}(t) = P_{\mu e}(t) - P_{\bar{\mu}\bar{e}}(t)$
$= -e^{-\gamma t} \sin^2(2\theta) \frac{\alpha \sin(2\phi) \sinh(\Omega_\alpha t)}{\Omega}$
$= c \sin(20) \qquad \Omega_{\alpha}$

CP-violation

- We assume CPT-conservation which implies M = M and $\Gamma = \Gamma^*$.
- For antineutrino probabilities, substitute $\phi \rightarrow -\phi$ and $\xi \rightarrow -\xi$.
 - $P_{\bar{e}\bar{\mu}} \neq P_{e\mu} \implies \text{CP-violation}$

$$P_{e\mu} \neq P_{\mu e} \implies \mathsf{T-violation}$$

Acknowledgements

The authors thanks the Ministry of Education, Government of India, for financial support through Institute of Eminence funding.

Reference

A.K. Pradhan *et al.* Phys. Rev. D 107, 013002

Scan me here!

For any suggestions/ queries: akhilpradhan@iitb.ac.in