Contribution ID: 529 Type: Poster

Search for Lorentz invariance violation with ANTARES and KM3NeT/ORCA6

Friday, 21 June 2024 17:30 (2 hours)

Lorentz invariance (LI) is a fundamental symmetry in physics that ensures that the same equations can be used to describe experiments in any inertial laboratory. Many proposed quantum gravity theories predict a violation of this symmetry, which is referred to as Lorentz invariance violation (LIV). The "Standard-Model extension" parametrizes physically valid ways of including LIV into the Standard Model of particle physics by introducing a set of LI- and CPT-violating operators coupled with coefficients. A non-zero value of at least one of these coefficients results in a deviation of the predicted neutrino oscillation probabilities from the

	least one of these coefficients results in a deviation of the predicted ficultino oscillation probabilities from the
	case of standard neutrino oscillations, which enables neutrino telescopes to measure or constrain these coeffi
	cients. The ANTARES neutrino telescope, which was in operation from 2007 to 2022, and the KM3NeT/ORCA
	neutrino telescope, which is currently being built and already taking data, are two water-Cherenkov tele
	scopes located in the Mediterranean deep sea. Both experiments are sensitive to the atmospheric neutrino
	flux, which has energies and baselines suitable for constraining LIV coefficients, with neutrino interactions
	being detectable by KM3NeT/ORCA6 at energies above a few GeV. This contribution reports on the progress
	of a combined analysis of data collected with ANTARES and with KM3NeT/ORCA6, an early-stage implemen
	tation of KM3NeT/ORCA with only six of the planned 115 detection units. The analysis focuses on isotropic
	LIV coefficients up to mass dimension six, among which some are still unconstrained.
_	
P	oster prize

Yes

Given name

Lukas

Surname

Hennig

First affiliation

Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg

Second affiliation

Institutional email

lukas.hennig@fau.de

Gender

Male

Collaboration (if any)

Primary authors: Dr DOMI, Alba (Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg); Mr MALERBA, Leonardo (DIFI, Università di Genova); HENNIG, Lukas (Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg)

Presenter: HENNIG, Lukas (Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg)

Session Classification: Poster session and reception 2

Track Classification: Beyond Standard Model searches in the neutrino sector