# Search for Lorentz invariance violation with **ANTARES and KM3NeT/ORCA6 Friedrich-Alexander-Universität**

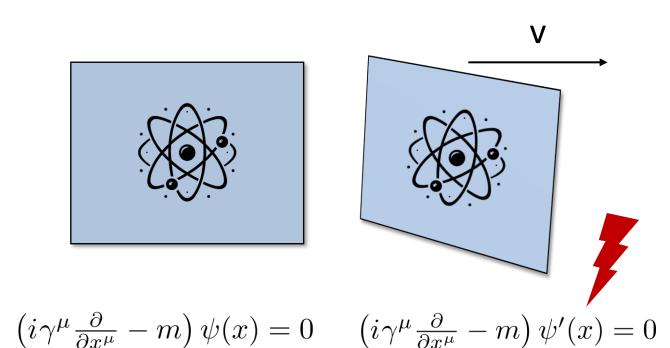


Alba Domi<sup>1,3</sup>, Lukas Hennig<sup>1</sup>\*, Leonardo Malerba<sup>2</sup> on behalf of the KM3NeT and ANTARES collaborations

<sup>1</sup>Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 2, 91058 Erlangen, Germany

<sup>2</sup> Dipartimento di Fisica, Università di Genova, Via Dodecaneso, 33, 16146 Genova, Italy

<sup>3</sup> Marie Curie Postdoctoral fellow with grant ID: 101068013 founded by the HORIZON-MSCA-2021-PF-01-01 programme


\* Speaker contact: lukas.hennig@fau.de

# Lorentz invariance violation (LIV)

Lorentz invariance states that the outcome of an experiment is:

**Erlangen-Nürnberg** 

- $\succ$  the same for two inertial observers watching the same experiment
- independent of the inertial laboratory in which it is performed

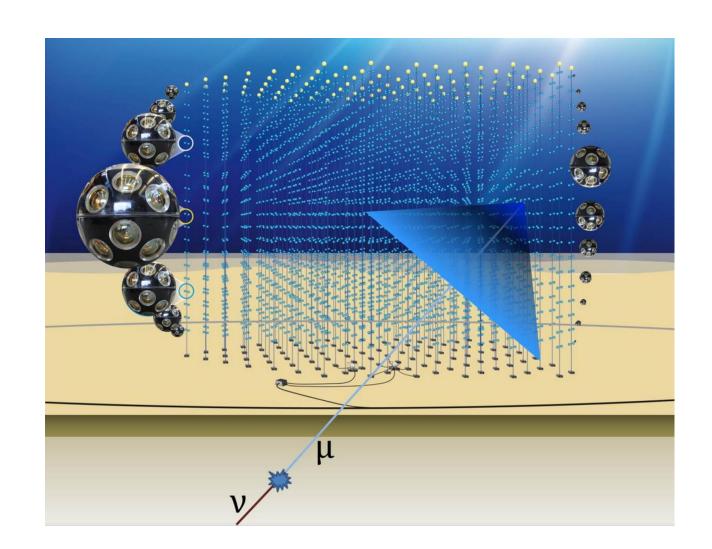


## **Standard Model Extension (SME)**

- An extension of the Standard Model including all possible LIV operators<sup>1</sup>
- Focus on isotropic LIV models that preserve rotational invariance in a preferred frame
- General LIV Hamiltonian for neutrinos introducing complex-valued LIV coefficients<sup>2</sup>:

# $\begin{array}{ccc} \overset{a(6)}{e} & \overset{a(6)}{e} \\ \overset{a(3)}{e} & \overset{a(3)}{\mu} \\ \overset{a(3)*}{\circ} & \overset{a(3)}{\circ} \\ \overset{a(3)*}{\circ} & \overset{a(3)}{\circ} \end{array} \end{array} \right) - \frac{4}{3} E \begin{pmatrix} \overset{c(1)}{e} & \overset{c(1)}{e} & \overset{c(1)}{e} \\ \overset{a(4)*}{e} & \overset{a(4)}{\mu} & \overset{c(4)}{e} \\ \overset{a(4)*}{\circ} & \overset{a(4)*}{\circ} & \overset{a(4)}{\circ} \end{array} \right) + E^2 \overset{a(5)}{a} - E^3 \overset{c(6)}{c} + \dots$

- LIV preserves observerindependence, but violates the second condition
- LIV is allowed in many theories beyond the Standard Model


*Observer cannot use the same* equations to describe identical experiments in different laboratories

#### $\langle a_{e\tau} \rangle$ $a_{\mu\tau}$ $a_{\tau\tau}$ $\langle C_{e\tau}^{(-)} \rangle$ $\hat{c}_{\mu au}$ $c_{\tau\tau}$

- Nonzero LIV coefficient implies deviations from standard oscillations
- Mass dimension determines oscillation dependence on baseline L and energy E
- Focus on mass dimension up to six

| Coefficient          | Unit             | CPT  | Oscillation effect |
|----------------------|------------------|------|--------------------|
| $\ddot{a}^{(3)}$     | GeV              | odd  | $\propto L$        |
| $\mathring{c}^{(4)}$ | -                | even | $\propto LE$       |
| $\mathring{a}^{(5)}$ | ${\rm GeV}^{-1}$ | odd  | $\propto LE^2$     |
| $\mathring{c}^{(6)}$ | ${\rm GeV^{-2}}$ | even | $\propto LE^3$     |

# **Experiment descriptions**



#### Artist impression of completed

#### KM3NeT/ORCA

- Cherenkov neutrino telescope under
  - construction in the Mediterranean Sea
- It will consist of 115 Detection Units (DUs)
- Focus here on subdetector KM3NeT/ORCA6 operated with six DUs from Jan. 2020 – Nov. 2021

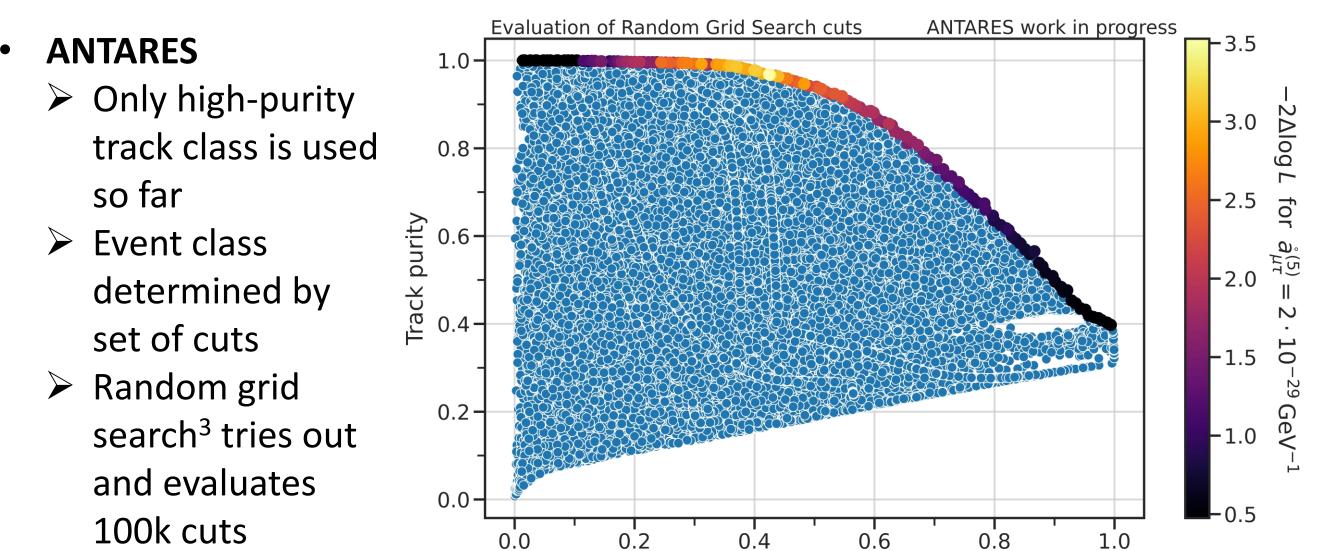
#### **ANTARES**

Cherenkov neutrino telescope operated in the Mediterranean Sea from 2007 to

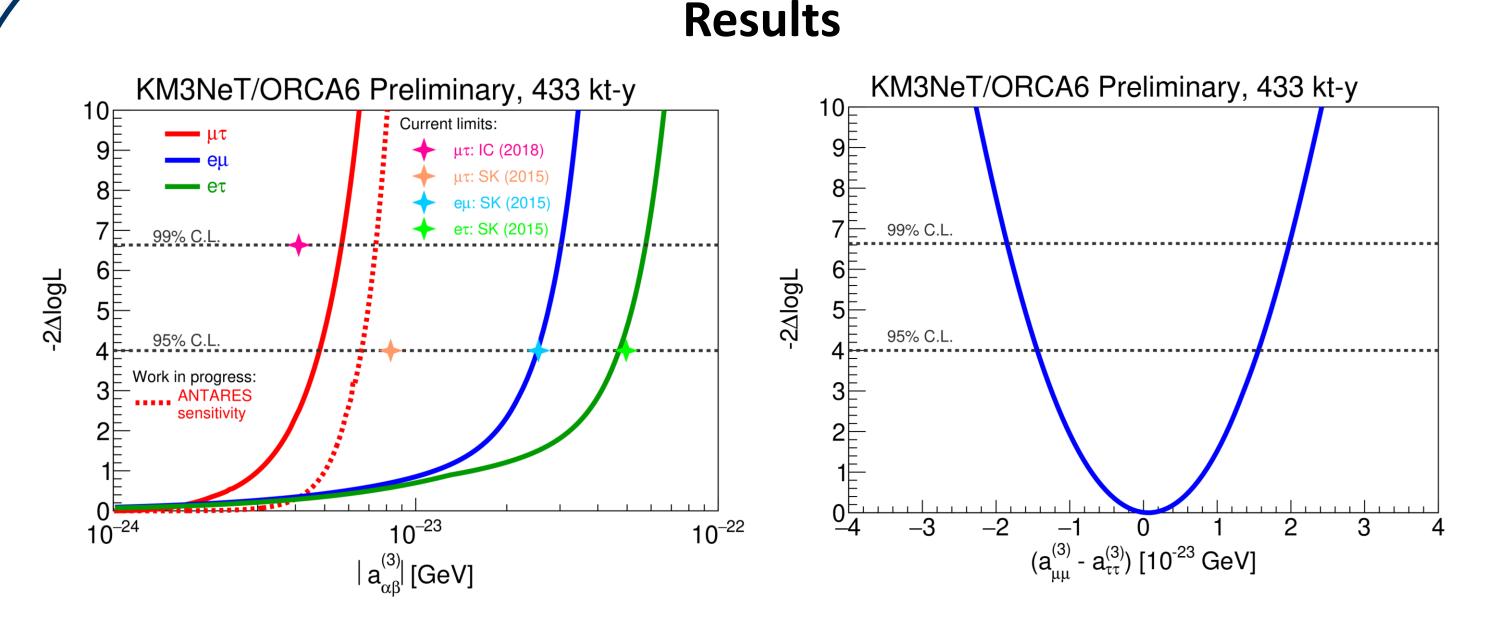
# **Analysis method**

- Analysis uses 2D binning in reconstructed energy and zenith angle
- Models assuming LIV are fitted to data by minimizing negative log-likelihood
- Standard oscillation parameter values from NuFit v5.0 global fit (with SK)
- Systematic flux parameters for KM3NeT/ORCA6 on the right
- Parameters with a \* are currently kept fixed in ANTARES

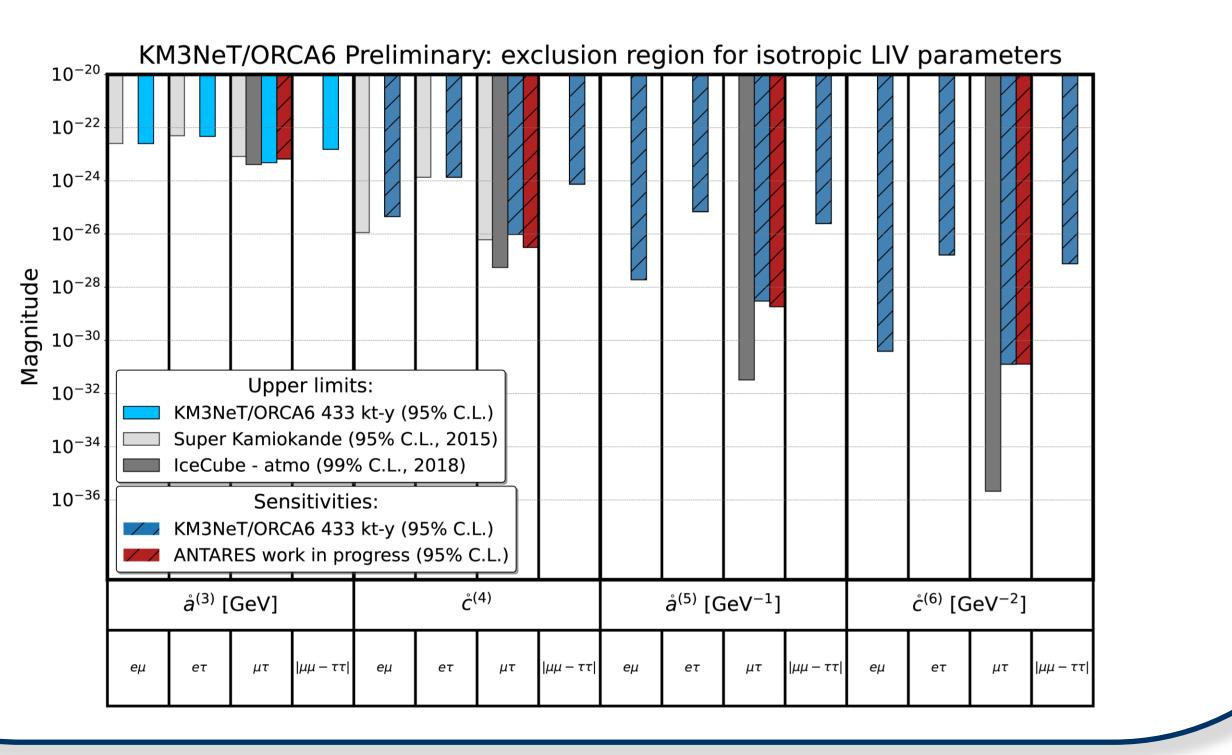
| Fit parameter                    | Prior uncertainty |
|----------------------------------|-------------------|
| Energy Scale*                    | 9%                |
| Overall Norm                     | Free              |
| Shower Norm <sup>*</sup>         | Free              |
| HP Track Norm                    | Free              |
| Spectral Index                   | 0.3               |
| HE Light Simulation <sup>*</sup> | 20%               |
| Muon Norm $*$                    | Free              |
| NC Norm                          | 20%               |
| $\nu_{\tau}$ -CC Norm            | 20%               |
| $ u_e/\overline{ u}_e$           | 7%                |
| $ u_{\mu}/ u_{e}$                | 2%                |
| $\overline{ u}_{\mu}/ u_{\mu}$   | 5%                |
| $ u_{ m hor}/ u_{ m ver}$        | 2%                |


KM3NeT/ORCA

#### 2022 It consisted of 12 lines


# **Event selection**

### KM3NeT/ORCA6


- > Events are sorted into three different classes: high-purity neutrinoinduced muon tracks, low-purity tracks, and showers
- Boosted decision tree scores determine the class of an event
- Most events have energies between 2 GeV and 100 GeV



- Off-diagonal coefficients are tested one by one, starting with the lowest mass dimension
- On-diagonal coefficients have strongly correlated oscillation effects



# We aim to put the first constraints on several LIV coefficients!



0.4 0.6 0.8 0.2 Fraction of tracks surviving the cut

- Best cuts form Pareto front
- $\succ$  Color of Pareto front cut indicates  $\chi^2$  resulting from fit to LIV model with  $a_{\mu\tau}^{(5)} = 2 \cdot 10^{-29} \, \text{GeV}^{-1}$
- $\blacktriangleright$  Pareto front cut achieving the highest  $\chi^2$  defines high-purity tracks
- Most events have energies between 100 GeV and 1 TeV

## References

<sup>1</sup>Colladay, Kostelecký (1998): Phys. Rev. D 58, 116002 <sup>2</sup>Kostelecký, Mewes (2012): Phys. Rev. D 85, 096005 <sup>3</sup>Bhat et al. (2018): Computer Physics Communications 228, 245–257 SK (2015): Phys. Rev. D 91, 052003 IC (2018): Nature Phys 14, 961–966

