First demonstration for a LArTPC-based search for intranuclear neutron-antineutron transitions and annihilation in ⁴⁰Ar using the MicroBooNE detector μBooNE Daisy Kalra, on behalf of the MicroBooNE Collaboration

Neutron Antineutron Transitions $(n \rightarrow \bar{n})$

- A baryon number violating process \rightarrow necessary to constrain theories of baryogenesis.
- Intranuclear $n \rightarrow \bar{n}$ (within a nucleus) is suppressed due to nuclear potential.
- Transition of $n \rightarrow \bar{n}$ is followed by n annihilation with nearby nucleon leading to final state particles (mostly pions) giving rise to semi-spherical topology.

A schematic showing $n \rightarrow n$ transition followed by annihilation

Experimental Searches

- This process is not discovered yet. *
- Current best limits-*
 - > SuperK[1]- 16 O-bound neutron transition time 3.6x10³² years with 90% CL.
- First-ever $n \rightarrow \bar{n}$ search demonstration within ⁴⁰Ar nucleus using **MicroBooNE detector**[3] \rightarrow **Important**

Topological features are quantified using an extent in space and time, and number spacepoints in a cluster.

ignal prediction (arb. norm.)

Observed data

0.2

Example of signal

0.3

0.1

cluster

ata-driven background with unce

0.4 0.5 0.6

BDT score

licroBooN

Exposure 372

- **Boosted Decision Tree (BDT)** is trained using above five topological variables to reject cosmic ray background.
- Remaining clusters are used to train a **sparse Convolution Neural Network (sCNN)[4].**
 - \succ Trained using a million of events

neutron Suppression lifetime factor

Free neutron proof-of-principle for DUNE. lifetime

MicroBooNE Detector

MicroBooNE used 85 tonne active mass liquid argon time projection chamber (LArTPC) detector.

⁴⁰Ar

- Detection mechanism-
 - \succ Ionization charge by three anode wire planes \rightarrow mm level spacial resolution.
 - \succ Scintillation light by photomultiplier tubes \rightarrow ns level timing resolution.
- Data collection from 2015-2021-
 - > Neutrino beam data
 - \succ Off-beam data (no neutrino interactions) \rightarrow used in this analysis

A schematic showing the MicroBooNE LArTPC

$n \rightarrow n$ Search Strategy in the MicroBooNE Detector

input image

Network is optimized by minimizing training loss and maximizing validation accuracy.

The expected background

A sCNN using VGG16 network architecture

Image-based selection is followed by topological extent cuts to further reject the background.

Cut-flow Table

	Using 3720s of exposure	Signal	Background
	No selection	1,633,525	1,618,827
50	Image-based selection	1,202,281	142
	Topological cuts	1,147,57	32
•	Signal selection efficiency	70.2%	
	Background efficiency		0.0020%

- Each interaction (2.3 ms of readout) consists of multiple reconstructed clusters
- \succ Cluster is a 3D spacepoint carrying information on wire position, time and ionization charge.
- **Background:** Real off-beam data is used as background.
 - \succ This data is used to evaluate background interaction rate.
 - \succ Predominantly cosmic ray muons and their induced electromagnetic and hadronic showers.
- Signal: Signal interactions are simulated using GENIE event generator.
 - MicroBooNE's default nuclear model configuration hA-LFG.
 - Signal interactions are subsequently processed through GEANT4 and detector geometry,

Overlay: Signal interactions are overlaid on real cosmic background to generate overlay samples.

corresponding to 372 s of exposure (used for reporting results) is 3.20 ± 1.79 (stat.) ± 0.57 (syst.)

Uncertainties on Signal and Background

Systematic uncertainties on signal selection efficiency	
GENIE (diff. Nuclear models)	4.85%
Detector (charge & light response)	6.72%
GEANT4 (hadron-Ar reinteractions)	2.32%
Total systematic uncertainty on signal	8.61%

Background uncertainty comes from statistical uncertainty on number of final selected background interactions in 3720 s of data \rightarrow 17.68%.

Results

✤ Using 372 s of exposure, a demonstrative lower limit is reported which is lower than the current best limits due to low exposure, small-sized detector and high background but substantial improvement in signal selection efficiency.

µBooNE → Collection

an 14949 Subrun 70 Event 3527		Exposure	Signal selection efficiency	Observed interactions (events)	Expected background	90% CL limit (years)
-1 Plane Channel	MicroBooNE ⁴⁰ Ar	372s	70.2%	2	3.2	1.1 x 10 ²⁶
MicroBooNE Run 16738 Subrun 146 Event 7325	SuperK ¹⁶ O	6050 days	4.1%	11	9.3	3.6 x 10³²

\succ Used to evaluate signal selection efficiency.

Assumed negligible signal in the off-beam data (consistent with the SuperK's best limit.

Topological-driven Selection

Signal topology

Cosmic ray background topology Topological features are used to train machine learning and deep learning algorithms-

- Localized and semi-spherical star-like topology for signal. Extended track-like topology for typical cosmic ray
- background.

Demonstrates LArTPC's capability (using real data) in searching for this process in next-generation large sized detector with high signal selection efficiency and improved sensitivity \rightarrow Proof-of-principle for DUNE

References

Phys. Rev. D 103 (2021) 012008. 2. Phys. Rev. Lett. 52 (1984) 720. 3. arXiv:2308.03924 [hep-ex].

4. Phys. Rev. D 103 (2021) 05212, arXiv:1711.10275, arXiv:1706.01307.

Acknowledgement: This material is based on work supported in part by the National Science Foundation under Grant PHY-1753228.