

Investigating the Effects of Long-Range Force in the P2SO and T2HKK Experiments

Priya Mishra¹ Rudra Majhi² Sambit Kumar Pusty¹ Monojit Ghosh³ Rukmani Mohanta¹

¹School of Physics, University of Hyderabad, Hyderabad, India, ²Nabarangpur College, Odisha, India

³Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Zagreb, Croatia

Abstract

Key Results

This work investigates the sensitivity of future long-baseline neutrino experiments, P2SO and T2HKK, to long-range forces (LRF) [1]. It aims to evaluate their ability to constrain LRF parameters, the impact of LRF on standard oscillation parameters, and their potential to limit the mass of the new gauge boson and coupling constant. The study finds that P2SO provides the best bounds on LRF parameters and that LRF affects the measurement of standard oscillation parameters, except for the precision of Δm_{31}^2 , which remains unchanged.

Introduction

When neutrinos travel through Earth-matter, encounter a potential due to e, p, n present in it $(H_{matter} = \text{diag}(\sqrt{2}G_F N_e, 0, 0))$. We assume that if Long Range Force exist in nature, the electrons present inside the Sun, generate a potential on the Earth. In this context, we take three cases

CPV, Hierarchy and Octant sensitivities:

of U(1) symmetries for the extension of standard model and generation of light gauge boson (Z').

 $U(1)_{L_e-L_{\mu}}, \quad U(1)_{L_e-L_{\tau}}, \quad U(1)_{L_{\mu}-L_{\tau}}.$ (1)

Figure 1. Neutrino interaction with matter. (Image courtesy: Ref. [2])

The long range potential is defined as below, for $L_e - L_\mu$ and $L_e - L_\tau$:

$$V_{ej} = g'_{ej}^2 \frac{N_e}{4\pi r} e^{-rM_{Z_{ej}}}$$
(2)

For $L_{\mu} - L_{\tau}$:

$$V_{\mu\tau} = g'_{\mu\tau} (\xi - \sin\theta_w \chi) \frac{e}{4\sin\theta_w \cos\theta_w} \frac{N_n}{4\pi r} e^{-rM_{Z_{\mu\tau}}}$$
(3)

The total Hamiltonian is now modified as:

$$H_{\nu/\overline{\nu}} = H_{vacuum} \pm H_{matter} \pm H_{LRF},\tag{4}$$

$$H_{LRF} = \begin{cases} \operatorname{diag}(V_{e\mu}, -V_{e\mu}, 0) & \text{for } U(1)_{L_e - L_{\mu}}, \\ \operatorname{diag}(V_{e\tau}, 0, -V_{e\tau}) & \text{for } U(1)_{L_e - L_{\tau}}, \end{cases}$$

Figure 4. Upper panels: CPV sensitivity, middle panels: hierarchy sesnsitivity and lower panels: octant sensitivity for all three cases of LRF.

Experimental Details

We used General Long Baseline Neutrino Experiments (GLoBES) package to simulate the results in P2SO (Protvino to Super-ORCA) and T2HKK (an alternative idea of Tokai to Hyper kamioka experiment) experiments. Values of oscillation parameters are taken from NuFit v5.2.

Exp	P2SO	T2HKK
Baseline	2595 km	1100 km
Beam power	$4 \times 10^{20} \text{ POT}$	$27 \times 10^{21} \text{ POT}$
Energy Peak	0.2-10 GeV	0-3GeV
Run-Time $(\nu : \overline{\nu})$	3 years: 3 years	2.5 years: 7.5 years

 Table 1. Experimental characteristics

Figure 2. Upper panel: P2SO exp., Lower panel: T2HKK exp.

Bounds Obtained

g-Mz parameter space:

(5)

Figure 5. The allowed range for gauge coupling vs mass of gauge boson.

Experiment & Model	$g_{e\mu}$	$g_{e au}$	$g_{\mu au}$	
P2SO (This work)	2.66×10^{-27}	2.48×10^{-27}	6.03×10^{-27}	
T2HKK (This work)	7.47×10^{-27}	7.12×10^{-27}	6.637×10^{-26}	
T2HK [2]	1.30×10^{-26}	1.24×10^{-26}	4.31×10^{-26}	
DUNE [2]	8.55×10^{-27}	7.03×10^{-27}	2.59×10^{-26}	

Table 3. Projected upper bound on $g_{\alpha\beta}$ from various long-baseline experiments.

Conclusions

Figure 3. Bounds obtained for the value of long range potential.

LRF Potential $[eV]$	SK [3]	DUNE [2]	T2HK [2]	P2SO	T2HKK
				(This work)	(This work)
$V_{e\mu}(\times 10^{-14})$	71.5	1.46	3.45	0.23	2.40
$V_{e\tau}(\times 10^{-14})$	83.2	1.03	3.43	0.23	2.15
$V_{\mu\tau}(\times 10^{-14})$	-	0.67	1.84	0.13	1.5

Table 2. Sensitivity limits at 90% C.L. on LRF parameters from several experiments.

The bounds obtained for LRF potential are more constrained for P2SO experiment compared to T2HKK. In presence for LRF potential: The octant sensitivity get increased for P2SO but decreases for T2HKK. The CPV sensitivity get decreased for both P2SO and T2HKK. The bounds on the gauge coupling obtained for P2SO are better than T2HKK and among the three symmetries, the most stringent bound comes for $L_e - L_{\tau}$.

Acknowledgement

I would like to thank Prime Minister's Research Fellowship for financial support.

References

- [1] P. Mishra, R. Majhi, S. K. Pusty, M. Ghosh, and R. Mohanta, "Study of Long Range Force in P2SO and T2HKK," 2 2024.
- [2] M. Singh, M. Bustamante, and S. K. Agarwalla, "Flavor-dependent long-range neutrino interactions in DUNE & T2HK: alone they constrain, together they discover," *JHEP*, vol. 08, p. 101, 2023.
- [3] A. S. Joshipura and S. Mohanty, "Constraints on flavor dependent long range forces from atmospheric neutrino observations at super-Kamiokande," *Phys. Lett. B*, vol. 584, pp. 103–108, 2004.

https://arxiv.org/abs/2402.19178

XXXI International Conference on Neutrino Physics and Astrophysics

mishpriya99@gmail.com