Contribution ID: 325 Type: Poster

Constraint on the atmospheric neutrino flux models using the cosmic-ray muon data in the Super-Kamiokande

Friday, 21 June 2024 17:30 (2 hours)

Atmospheric neutrinos and cosmic-ray muons are generated from the showers of secondary particles via the interactions of primary cosmic-ray particles with air nuclei at the top of the atmosphere. The meson, such as pion and kaon, decays into atmospheric neutrino and cosmic-ray muon, reflecting the information of the hadronic interactions depending on their energy. Currently, atmospheric neutrino flux models have uncertainties about various points, such as neutrino/antineutrino ratio and absolute flux, and so on. To constrain these uncertainties, we consider the usable of cosmic-ray muon data. In this poster presentation, we report the measurement of the charge ratio of the cosmic-ray muons and the modulation of the arrival cosmic-ray muons at underground by analyzing the data accumulated by Super-Kamiokande detector. In addition, we consider about the constraint on the neutrino/antineutrino ratio from the result of the muon charge ratio, and on the parent meson ratio from the result of the muon modulation.

Poster prize

Yes

Given name

Tomoaki

Surname

Tada

First affiliation

Okayama University

Second affiliation

Institutional email

pgot8nua@s.okayama-u.ac.jp

Gender

Male

Collaboration (if any)

Super-Kamiokande

Primary author: TADA, Tomoaki (Okayama University, Japan)

Co-authors: Dr SATO, Kazufumi (ICRR); Prof. KOSHIO, Yusuke (Okayama University); Dr NAKANO, Yuuki

(ICRR)

Presenter: TADA, Tomoaki (Okayama University, Japan)Session Classification: Poster session and reception 2

Track Classification: Atmospheric neutrinos