- <u>Constraint on the atmospheric neutrino flux models</u> using the cosmic-ray muon data in the Super-Kamiokande
- **Tomoaki Tada**^A, Yuuki Nakano^B, Kazufumi Sato^C, Yusuke Koshio^A, for the Super-Kamiokande collaboration arXiv:2403.08619 Okayama University^A, University of Toyama^B, Kamioka observatory^C tadatomo2976@s.okayama-u.ac.jp, ynakano@sci.u-toyama.ac.jp

Introduction & physics motivations

- Neutrino oscillation
 - Mass hierarchy, octant of θ_{23} , and the value of CP-violating phase are still unknown.
 - For further precise measurements, we should reduce uncertainties due to atmospheric neutrino; absolute flux, $\nu/\bar{\nu}$ ratio, and energy spectrum.
- Cosmic-ray muon
 - Come from the decay of mesons produced in the hadronic showers as the pair of the atmospheric neutrinos.
 - We can indirectly obtain information about atmospheric neutrinos by measuring cosmic-ray muons.
- Muon charge ratio, spin polarization, and parent meson ratio
 - \cdot Muons from kaon decays tend to have larger energy and polarization than those from pion decays.
 - · Measurement of charge ratio and polarization are directly related to $\nu/\bar{\nu}$ ratio and neutrino energy spectrum.

• As muon energy increases, the contribution of kaon decay increases.

 \rightarrow Constrain the hadronic interaction model and new input for improving the atmospheric neutrino flux simulation.

Measurement of charge ratio and polarization

Use the pair event of the stopping muon in the detector and the decay electron.

- Charge ratio : Determined using the decay time of stopping muon.
- Polarization : Determined using opening angle between muon and decay electron. Data-set : 2008 Sep. - 2022 Dec.

Analysis

- Observed data was analyzed and compared with the MC simulation, which generated muon decay in water.
- MC simulation for decay electron
 - Considered muon charge, and their decay process with polarization.
 - \rightarrow Nuclear capture of negative muon that affects the energy spectrum of decay electron.
 - \rightarrow De-polarization mechanisms in water. (Different between positive and negative muon)
- Results
 - \cdot To determine them, chi-square is evaluated by fitting three distributions.
 - \rightarrow Decay time, Opening angle (cos θ), Energy spectrum of decay electron.

 $R = 1.32 \pm 0.02$ (stat. + syst.) $P_0 = 0.52 \pm 0.02$ (stat. + syst.)

Charge ratio is compared with two models (Honda flux [2], π K model [5]).

- \rightarrow Consistent with Honda flux (< 1 σ).
- \rightarrow 1.9 σ tension from the π K model.
- Polarization has 1.6σ tension from Honda flux expectation [2].
- This result provide new input to the neutrino flux simulation to constraint atmospheric neutrino production.

Measurement of the atmospheric meson ratio

- Use the through going muon in the detector
- Data-set : 2008 Sep. 2018 May.

Analysis

- The correlation between the variation of muon rate (R_{μ}) and the variation of atmospheric temperature ($T_{\rm eff}$).
 - R_{μ} is the number of muon events that are normalized by its lifetime.
 - $\cdot T_{\rm eff}$ is the temperature weighted by the muon production intensity at different altitudes in the atmosphere [6].
 - \rightarrow Atmospheric temperature data-set is provided by the Japan Meteorological Agency [7].

Results

• Correlation coefficient $\alpha_{\rm T}$ is obtained by fitting with linear function.

 $\alpha_{\rm T} = 0.85 \pm 0.01$ (stat.)

- We can calculate the atmospheric meson ratio $r_{K/\pi}$ using the correlation coefficient $\alpha_{\rm T}$.
 - \rightarrow Kaon and pion are affected differently due to the variation of the atmospheric temperature.

The calculation of the atmospheric meson ratio $r_{K/\pi}$ Theoretical function of $\alpha_{\rm T}$ is depend on $r_{K/\pi}$ [6]. $\alpha_{\rm T} = \frac{1}{D_{\pi}} \frac{1/\epsilon_{\rm K} + (0.365 \times r_{{\rm K}/\pi})(D_{\pi}/D_{\rm K})^2/\epsilon_{\pi}}{1/\epsilon_{\rm K} + (0.365 \times r_{{\rm K}/\pi})(D_{\pi}/D_{\rm K})/\epsilon_{\pi}}$ $D_{\pi,\mathrm{K}} \equiv \frac{\gamma}{\gamma+1} \frac{c_{\pi,\mathrm{K}}}{1.1\langle E_{\mathrm{thr}} \cos\theta \rangle} + 2$

 $r_{\rm K/\pi} = 0.12 \pm 0.03$ (stat.)

• This result is important information to improve the prediction of the atmospheric neutrino flux.

Summary

- > For further precise measurement of neutrino oscillation, it is important to understand the atmospheric neutrino precisely.
 - Muon charge ratio reflects the ratio of neutrinos and anti-neutrinos.
 - Muon polarization and the atmospheric meson ratio affects the shape of neutrino energy spectrum.

 $R = 1.32 \pm 0.02$ (stat. + syst.) $P_0 = 0.52 \pm 0.02$ (stat. + syst.) $r_{\text{K}/\pi} = 0.12 \pm 0.03$ (stat.)

 \triangleright These results are consistent with Honda flux expectation within 2σ (charge ratio and polarization). \triangleright Especially for P_0 and $r_{K/\pi}$, provide the unique input to improve the atmospheric neutrino simulation.

[1] Phys. Rev. D. 75, 043006 (2007). [2] Phys. Rev. D 92, 023004 (2015). [3] Nucl. Inst. Meth. A 501, 418 (2003). [4] Nucl. Inst. Meth. A 1027, 166248 (2022). [5] Astropart. Phys. 32, 61 (2009). [6] Astropart. Phys. 33, 140 (2010). [7] J. Meteor. Soc. Japan. Ser. II 96, 269 (2016).

NEUTRINO2024 @ Milano, Italy, 16th ~ 22nd June, 2024

$\epsilon_{\pi} = (114 \pm 3) \text{ GeV}, \epsilon_{K} = (851 \pm 14) \text{ GeV}$

 \rightarrow The energies in which decay and interaction occur with equal probability