Seasonal Variation of Muon Rates Using Full Dataset in Daya Bay Reactor Neutrino Experiment

Poster ID #291

NEUTRINO 2024 XXXI International Conference on Neutrino Physics and Astrophysics

Milano (Italy) - June 16-22, 2024

Bangzheng Ma, Shandong University, China Email: mabangzheng@mail.sdu.edu.cn

(On behalf of the Daya Bay collaboration)

Temperature Correlation of Muon Flux

 \checkmark The rate of cosmic ray muon is expected to be correlated with the atmospheric temperature, and the correlation between muon rate R_u and effective

Daya Bay Reactor Neutrino Experiment

- ✓ Daya Bay Experiment features eight identical antineutrino detectors in three underground experimental halls at different depths.
- It provides an ideal setup to study coefficient α using identical detectors

temperature T_{eff} given by^[1]

- \checkmark The correlation coefficient α increases as the energy threshold gets larger at detectors deeper than 50mwe^[1].
- **Cosmic Ray Shower Illustration** \checkmark Muon with higher energy has a lower probability of decay before reaching the detector due to time dilation and is relatively more sensitive to changes in temperature.
- ✓ Daya Bay has measured the correlation coefficient with dataset collected between Dec.2011 and Nov.2013^[3].

Muon Selection and Muon Rate

		E	H1	AD	1				
							Z	19.85	•
•	1	.4		;			e [H	19.75 —	Å
Â,	À	A	Λ	A			Rati	19.7 —	
				f			on l	19.65 —	Į
÷.							Muc	19.6	
				• •				19.55	

EH1AD2

- \checkmark Muon candidates are defined as events with greater than 60 MeV energy deposition in ADs (antineutrino detectors).
 - Examples with energies greater than 10 MeV have Michael electron mixed in, and 60 MeV cut can remove them.
- Raising the energy cut of EH3 AD1 to 100MeV due to the leak of liquid scintillator in Summer 2012^[3].
- 1 T U Entries/0.1 Time interval between adjacent muon [s] Take EH1AD1 as an example, time between neighboring muon events can be well fitted to an exponential distribution. Significant seasonal modulation in the muon rate history distribution.
 - Sinusoidal fits are for comparison purpose only.

and December 2020 and retain data where acquisition time

effective temperature (X axis) and that of muon rate(Y axis). ✓ Work in progress, correlation coefficients for each AD and

[2]] F.P. An et al. (The Daya Bay Collaboration), Phys.Rev. D97, 052009 (2018) [4] The ERA-Interim database of the European Centre for Medium-Range