Characterizing High-Energy Neutrino Emission Parameters in Bright Seyfert Galaxies and Quasars

Jose A. Carpio^{1*}, Ali Kheirandish¹ and Kohta Murase²

¹ Dpt. of Physics and Astronomy, University of Nevada, Las Vegas; Nevada Center for Astrophysics, University of Nevada, Las Vegas ² Dpt. of Physics and Astronomy, Pennsylvania State University; Institute for Gravitation and the Cosmos, Pennsylvania State University; Yukawa Institute of Theoretical Physics * Email: jose.carpiodumler@unlv.edu

INTRODUCTION

The IceCube Collaboration first detected high-energy cosmic neutrinos in 2013 [1]. These TeV-PeV neutrinos are produced in pp or py collisions involving high-energy cosmic rays (CRs). In both scenarios, charged and neutral pions are produced, the former decaying into neutrinos and the latter to γ -rays. This leads to a multimessenger connection between the two particles. However, Fermi-LAT's γ -ray background measurement points to γ -ray opaque sources as major contributors to the diffuse neutrino flux [2]. This realization is reinforced by the observation of high-energy neutrinos from the direction of the nearby active galaxy NGC 1068 and an excess of neutrinos from NGC 4151 [3].

PARAMETER FIT

In this work, we will study three parameters: the intrinsic X-ray luminosity L_X , the CR to thermal pressure ratio $P_{
m CR}/P_{
m th}$, and the turbulence strength parameter $1/\eta_{
m tur}$. The pressure ratio is correlated to the normalization of the CR spectrum. The acceleration timescale $t_{\rm acc} \propto \eta_{
m tur}$, such that $\eta_{
m tur}$ affects the maximum CR energy. We perform a likelihood analysis, where we define

$$\ln \mathscr{L} = \ln \frac{1}{1 + B_{21}} + \sum_{i} \ln P_{i}.$$

The first term contains the information of the neutrino spectrum and B_{21} is the Bayes factor which compares the reported ν power-law flux hypothesis against the corona model. The second term accounts for the γ -rays (binned) measurements by Fermi-LAT. We use this likelihood to construct a Markov Chain Monte Carlo (MCMC) to look at the posterior distributions of the corona model parameters.

The disk-corona model for neutrino emission from active galactic nuclei (AGNs) provides a compact region for stochastic particle acceleration to occur, leading to high-energy neutrinos and γ -rays [4,5]. The model can explain the observed NGC 1068 neutrino fluxes at the \sim 30 TeV range. In addition, TeV photons cascade down to GeV and sub-GeV energies within this environment. Here, we use the observed neutrino and sub-GeV γ -ray fluxes to narrow the neutrino emission parameter space from AGN coronae. This can be used to identify subsets of sources similar to NGC 1068 that are strong neutrino emitters.

METHOD

We consider stochastic particle acceleration, which accelerates protons by scattering within the magnetohydrodynamic turbulence. The cosmic ray spectrum is computed via the Fokker-Planck equation

$$\frac{\partial \mathscr{F}_p}{\partial t} = \frac{1}{\varepsilon_p^2} \frac{\partial}{\partial \varepsilon_p} \left(\varepsilon_p^2 D_{\varepsilon_p} \frac{\partial \mathscr{F}_p}{\partial \varepsilon_p} + \frac{\varepsilon_p^3}{t_{\text{cool}}} \mathscr{F}_p \right) - \frac{\mathscr{F}_p}{t_{\text{esc}}} + \dot{\mathscr{F}}_{p,\text{in}}$$

where \mathscr{F}_n is the momentum distribution function, D_{ε_n} is the diffussion coefficient, $t_{
m cool}$ is the cooling time, $t_{
m esc}$ is the escape time and ${\mathscr F}_{p,{
m inj}}$ is the injection term. We evolve ${\mathscr F}_p$ until the steady state is reached, obtaining the injected CR spectrum.

Within the corona, CRs interact with the surrounding protons and photons. We consider

E [GeV]

pion production via pp and $p\gamma$ processes and compute the cascades by solving the kinetic equation. The processes involved in neutrino and γ -ray production are summarized below.

Particle	Injection	Reinjection
Neutrinos	Decay of π^{\pm} from $p\gamma$ collisions	us escape the source
Gamma-rays	Decay of π^0 from $p\gamma$ collisions Bethe-Heitler process $p\gamma$ collisions	Two-photon annihilation Inverse Compton Synchrotron radiation

REFERENCES

1. M. Aartsen et al. [IceCube Collaboration], Science 342, 1242856 (2013). 2. Murase, Guetta & Ahlers, PRL 116, 071101 (2016). 3. R. Abbasi et al. [IceCube Collaboration], Science 378, 6619 (2022). 4. Murase, Kimura and Mészáros, PRL 125, 01101 (2019). 5. Kheirandish, Kimura and Murase & McDaniel, ApJ 954, L49 (2023). 7. Murase et al. ApJ 961, L34 (2024). 8. Q. Liu et al [IceCube Collaboration], TAUP 2023 Contributions https://indico.cern.ch/event/1199289/contributions/5447243.