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RECENT ADVANCEMENTS IN MACHINE 
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B. Sparse Convolutions209

The scintillator pixel-maps produced by the NOvA210

detector present several unique challenges for machine211

learning. These pixel-maps are typically very sparse,212

with with events having, on average, 0.84% of pixels con-213

taining non-zero hit values, leaving most of the observa-214

tions void of data. Convolution neural networks (CNNs)215

are ubiquitous element of deep learning methods for e�-216

ciently learning on image and other spatially-related col-217

lections of data [15]. This e↵ectiveness stems from the218

extreme weight sharing that comes with using a small219

kernel matrix which is applied uniformly across space220

through the convolution operation. These kernels are221

typically small compared to the size of the input image,222

and are very e�cient to process.223

However, even CNNs falter when dealing with sparse224

images since small kernels may contain very little actual225

data, and extremely large kernels would eliminate the226

benefits of weight sharing. To combat this, the spatial227

kernel concept has been expanded apply to sparsely dis-228

tributed data, proving especially successful in 3D objec-229

tive reconstruction [16, 17]. These apply the convolution230

operations only in regions where data exists, saving on231

computation and preventing the dilution of sparse values232

even in a predominantly zero valued image.233

C. Interpretable Deep Learning234

The black-box nature of deep neural network mod-235

els stems from our inability to analytically describe the236

training and inference processes in all but the most simple237

neural networks [18]. There has recently been a surge in238

methods for analyzing specific aspects of neural network239

architectures to extract human-understandable measure-240

ments from their internal structures. Saliency maps [19]241

provide a method for analyzing the behaviour of CNNs242

by studying the model’s output gradients with respect243

to the inputs and provide a very visual understanding244

of the network’s behaviour near individual inputs. Simi-245

larly, transformers may be analyzed by instead focusing246

on the attention matrices computed during self-attention247

[12, 14, 20]. These attention maps measure the impor-248

tance of di↵erent inputs, for example individual words in249

a language model, for determining the output of a trans-250

former.251

III. SPARSE TRANSFORMER CVN252

We combine Sparse CNNs with Transformers in order253

to address both the pixel-map sparsity and the variable254

prong counts in each event. We introduce Transformer-255

CVN (Convolutional Visual Network), shortened to T-256

CVN, which embeds the sparse images into a dense la-257

tent space using sparse CNNs [17] before processing the258

the embeddings with transformer encoders [14] to include259
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FIG. 3: A complete diagram of Sparse Transformer
CVN, including example pixel-maps from a ⌫µ event.

For context, The event pixel-map path is highlighted in
red. Truth labels (either event or prong) for each

pixel-map are provided above each input.

contextual information. We provide as input both indi-260

vidual prong pixel-maps and a combined event pixel-map261

since it may include hits which where not assigned to any262

particular prong. The individual prongs are associated263

their respective particle labels while the event pixel-map264

is associated with an overall neutrino interaction type.265

We use a densely-connected residual CNN [21]266

(DenseNet) as the base architecture for the pixel-map267

embedding. This architecture introduces weighted skip268

connections between every pair of CNN layers, with the269

goal of ensuring that network activations do not decay270

due to input sparsity. We replace traditional convolu-271

tion and pooling operations in DenseNet with sparse con-272

volution and pooling operations [17]. We elect to only273

compute convolutions where the center pixel is non-zero,274

and we do not create additional non-zero values between275

sparse convolution operations [16]. This decision is mo-276

tivated by the observation that our data typically con-277

sists of long traces, meaning the sparse convolution’s re-278

ceptive fields will likely significantly overlap, even while279

only evaluating in non-zero regions. We embed the prong280

pixel-maps with a single CNN, sharing weights between281

prongs. A separately parameterized event CNN is used282

for event pixel-map to account for di↵erences in its in-283

put distribution and classification objectives. Each pixel-284

map, originally two views at 100 ⇥ 80 pixels, is embed-285

ded into a single dense latent vector known as a embedded286

pixel-map, with dimensionality determined from a hyper-287

parameter. The CNNs form the first stage of the network288

in Figure 3.289

We process these embedded pixel-maps with trans-290

former encoder [14] to allow contextual information to be291

shared between prongs. Both prong and event embedded292

pixel-map are encoded using a single, shared transformer293

encoder stack, visible in Figure 3. This transformer en-294

coder follows the canonical formulation described in [14],295
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NOvA’s primary goal is to 
study 3 flavour neutrino 

oscillations via:
 ,  νμ → νμ νμ → νe

 ,  ν̄μ → ν̄μ ν̄μ → ν̄e

Other goals include:
• Search for sterile neutrinos

• Neutrino cross sections

• Supernova neutrinos

• Cosmic ray physics
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NOvA uses a variety of algorithms to reconstruct physics 
information - machine learning contributes significantly.

Detectors are naturally segmented - pairs of pixel maps. 

Using CNNs to do particle ID since 2017 (Phys.Rev.Lett. 118(2017)).
Focus now on extending to vertex finding and improving 
robustness and interpretability of ML techniques.

VertexCVN TransformerCVN
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Metric Event Prong
T-CVN E-CVN T-CVN P-CVN

Accuracy 0.894 0.897 0.783 0.726
Precision 0.894 0.908 0.783 0.760
Recall 0.894 0.897 0.783 0.726
ROC AUC 0.982 0.984 0.951 0.932

TABLE I: Aggregated metrics for event classification
and prong reconstruction. All metrics were aggregated
in a one-versus-all manner across each task’s labels.

Event T-CVN E-CVN
⌫e CC 0.981 0.983
⌫µ CC 0.987 0.987
NC 0.965 0.965
Cosmic 0.998 0.999

Prong T-CVN P-CVN
e 0.972 0.864
µ 0.987 0.921
p 0.934 0.788
� 0.896 0.812

TABLE II: ROC AUC values for individual labels in a
one-versus-all manner for either Event Classification

(left) or Prong Reconstruction (right).

D. Performance400

We evaluate the baseline reconstruction performance401

on on both event and prong reconstruction for Trans-402

formerCVN. We compute standard classification metrics403

such as true positive rate (Precision), the sensitivity rate404

(Recall), the one-versus-all accuracy score (Accuracy),405

and the area under the one-versus-all ROC curve for406

both event and prong classification. We present aver-407

age values across the testing dataset for various metrics408

in Table I. We aggregate the metrics in a one-versus-all409

approach, re-weighting the classes for a balanced metric.410

We also highlight the more important classes for both411

event classification and prong reconstruction in Table II.412

We present the area under the ROC curves for the four413

charged current classes for event classification and the414

four most common prong labels for prong reconstruction,415

with each ROC curve computed in a one-versus-all man-416

ner. Full per-class ROC curves and confusion matrices417

are available in the appendix.418

We compare the Sparse Transformer CVN (Labeled419

TransformerCVN or T-CVN in plots) to two baseline420

models currently used for NOvA reconstruction. We421

compare the event current prediction against the orig-422

inal NOvA EventCVN (E-CVN ) [1], and the prong re-423

construction performance against ProngCVN (P-CVN )424

[2] which uses only the current prong and an event pixel-425

map.426

We notice that event performance remains nearly iden-427

tical to the event CVN model, with one small benefit of428

TransformerCVN appearing to produce a more balanced429

prediction with identical precision and recall. This likely430

means that both of models are near peak-performance for431

the given dataset, with no performance degradation from432

performing both event and prong tasks simultaneously.433

TransformerCVN shows marked improvement in prong434

reconstruction. The additional context provided by all435
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FIG. 4: Event-Prong attention scores.

prongs and the transformer’s attention mechanism im-436

proves prong AUC across all of the major particle types437

when compared to the ProngCVN. We achieve an 0.02438

increase in a one-versus-one pairwise aggregated AUC439

when compared to ProngCVN and an increase in nearly440

5% reconstruction accuracy. This improvement is most441

pronounced on the critical lepton prong reconstruction,442

where we experience an improvement in e prong AUC443

from 0.864 to 0.975 (Table II).444

V. INTERPRETABILITY445

Deep neural networks are often criticized for their446

opacity, commonly referred to as the ”black box” prob-447

lem, as their complex architecture obscures the reason-448

ing behind their predictions. Despite this complexity,449

the unified structure of the TransformerCVN provides450

avenues to partially illuminate this black box. By track-451

ing the attention mechanism throughout the network, we452

build an interpretable understanding of the relationships453

between di↵erent particles and event types. We further454

reverse engineering the spatial structures learned by the455

CNNs to construct spatial profiles of di↵erent particles,456

providing insight into methods of separating similar par-457

ticles. Critically, previous work focuses on per-example458

interpretability, which can often be noisy and di�cult to459

elucidate. We instead elect to aggregate these interpreta-460

tion results across our dataset to extract more consistent461

signals from these generally noisy procedures. Through462

these interpretability studies, we find evidence suggest-463

ing the network learns several known principles from the464

standard model.465

A. Attention Maps466

One major advantage of using networks based on at-467

tention such as transformers is that we may easily visual-468

ize the attention weights attributed to each input. This469

provides a numerical importance of each input to each470

output, providing an indication of how much the partic-471

ular input contributed to the given output. We may com-472

pute the total attention across the entire encoder stack by473

simply taking the product of individual attention maps.474
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Interpretability 

Developed to address several known failure modes of NOvA’s existing algorithm 
“Elastic Arms”.

VertexCVN Elastic Arms

True Vertex

• Forward failure - tendency for main prong to be split into two.

• Backward failure - tendency for multiple, small prongs to be combined into 

one. 

NOvA’s first attempt to apply machine learning to estimate the position that a neutrino 
interacts with the detector medium.

Architecture & Training

Results
VertexCVN is more precise than Elastic Arms 
but slightly less accurate.

VertexCVN performance is largely 
insensitive to the true position of the vertex.

13 cm ~ 2 planes

A manual scanning of events has 
shown: 
• the targeted failure modes 

have been eliminated.

• two (minor) failure modes in 

total.

Relative performance has been studied for 
different types of neutrino interaction:
• more performant on  (even 

in ND where training sample 
population is small).


• less performant on .

νeCC

NC

Uses a modified version of the network used by 
NOvA to do event classification MobileNetv2 
(arXiv:1801.04381):
• proven to do good feature extraction for 

NOvA.

• can use existing pixel maps as input.

• designed for fast inference on CPU.

Trained with beam modes combined but separately 
for Near (~18 million events) and Far (~ 26 million 
events) detectors.

Network converges within first epoch.

A novel NN combining spatial learning enabled 
by convolutions with contextual learning 
enabled by attention.

Attention mechanism can 
be tracked throughout the 
network.

NOvA’s events contain several 
particles, each producing 
sparse, high-dimensional 
spatial observations.

Joint approach simultaneously classifies each 
event and reconstructs every individual 
particle’s identity.

Classifies events with 90% accuracy and improves 
identification of individual particles by 6%.
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We present the detailed method for computing this total475

attention in Appendix B.476

Individual attention maps are typically noisy and of-477

fer limited physics insight. For clear physical interpreta-478

tions, we aggregated attention scores across many events.479

We apply a novel aggregation process accounting for480

varying prongs in each event: each prong’s truth la-481

bels define its type, and we incorporate the additional482

event pixel-map as an event-type pseudo-prong. For ev-483

ery event type, we average logit-attention scores for each484

true prong type in the event, summing the attention score485

for all prongs of the same type in each event. Put an-486

other way, we find the importance of every prong type for487

a given event, and then average this importance across488

events, grouping by event class. This provides the im-489

portance of di↵erent types of prongs for providing the490

context necessary to make an event-level prediction. We491

present this analysis in Figure 4. We notice that the the492

presence of particles largely unique to certain interaction493

types have large impacts namely elections for ⌫e CC and494

muons for ⌫µ CC. We also notice that the NC events,495

which are generally more varied depend on the (photon496

from a) neutral pion for classification.497

This aggregated analysis of attention allows us to build498

a more general understanding of the network’s predic-499

tions, avoiding the pitfalls of typically single example-500

based experiments of interpretability. We also perform501

alternate aggregations in a per-prong fashion, ignoring502

the fact that events may have more than one prong of503

the same type in each event. This generally produces less504

informative attention maps, and we present this analysis505

in the Appendix.506

B. CNN Saliency Maps507

One method for interpreting the learned behaviour508

of convolution networks is to use saliency maps [19].509

Saliency refers to the derivative of a network output with510

respect to the input pixel, @O

@I
. This produces pixel-511

maps representing how strongly the output probability512

will change with respect to an infinitesimal change in in-513

tensity for every input pixel. We produce these saliency514

maps for every prong’s output and event output with515

respect to all input pixel-maps, both prong and event.516

Similarly to the attention maps, saliency is typically517

very noisy for individual events, especially due to our518

input sparsity. We present a method for aggregating519

saliency maps across multiple events to extract an av-520

erage, interpretable result for understanding the under-521

lying physics. We rotate all of the pixel-maps so that the522

tracks within them all face towards the +z axis and av-523

erage each output head’s saliance over these rotate pixel-524

maps over all chosen events for that output head. We525

may chose to either aggregate over all prong pixel-maps,526

or only those where the truth label matches the output.527

We present the matching truth prong label in the main528

text, although we provide the alternative all-event ag-529

FIG. 5: Grid of aggregated saliency maps and di↵erence
maps for every pair of prong types. Red indicates a

positive correlation with the Positive Particle’s
reconstruction probability, while blue represents a

negative correlation.

gregation in Appendix E. We also present a detailed,530

technical description of the aggregation procedure in Ap-531

pendix D. We note that this aggregation is imperfect and532

introduces some artifacts, which may explain certain phe-533

nomenon such as the asymmetry along the vertical axis534

in some of the maps.535

Figure 5 presents a grid of saliency maps for five536

major prong particle labels. The diagonal pixel-537

maps present saliency maps for the output associ-538

ated with each particle type. The o↵-diagonal maps539

presents pair-wise di↵erence saliency maps: computed540

as simply (Positive Particle � Negative Particle), and re-541

normalized to highlight the di↵erences. These maps in-542

dicate which regions correlate the most with the net-543

work predicting the Positive Particle label rather than544

the Negative Particle label.545

One would expect that muons are the easiest to vi-546

sually identify from the other particle classes considered547

here due to their tendency to leave tracks rather than548

showers. It is clear from the muon rows that hits near549

the vertex make the network more likely to classify the550

prong as a muon track as opposed the shower of a show-551

ering particle. µ/� separation presents an interesting ex-552

ample where hits at large angles from the prong direction553

as opposed to hits along the direction vector far from554

the vertex make � classification more likely. � separa-555

Build an interpretable 
understanding of the 
relationships between 
different particles and event 
types.

Elect to aggregate interpretation 
metrics across the full dataset to 
extract consistent signals.

Attention Map

Saliency & Difference Maps

13 cm ~ 2 planes

νeCC
νμCC
NC

Saliency: the derivative of a network 
output with respect to the input pixel.

Attention: relative importance of 
different types of prong for providing 
context necessary to make event-
level prediction.
• Presence of electron prong 

impactful for .

•  depends on photons from a 

neutral pion.

νeCC
NC

z

z

x

• Diagonal: saliency for a particular 
predicted class.


• Off-diagonal: pair-wise difference 
saliency maps computed as 
positive particle minus negative 
particle.


