RECENT ADVANCEMENTS IN MACHINE LEARNING TECHNIQUES UTILISED BY NOVA

Ashley Back¹, Alexander Booth², Erin Ewart¹, Alexander Shmakov³, Wenjie Wu³ & Alejandro Yankelevich³ for the NOvA Collaboration

VertexCVN

NOvA's first attempt to apply machine learning to estimate the position that a neutrino interacts with the detector medium.

Developed to address several known failure modes of NOvA's existing algorithm "Elastic Arms".

• Forward failure - tendency for main prong to be split into two. • Backward failure - tendency for multiple, small prongs to be combined into one.

Architecture & Training

Uses a modified version of the network used by NOvA to do event classification **MobileNetv2** (arXiv:1801.04381):

TransformerCVN

NOvA's events contain **several** particles, each producing **sparse**, high-dimensional spatial observations.

A novel NN combining **spatial learning** enabled by convolutions with contextual learning enabled by **attention**.

Joint approach **simultaneously classifies** each event and reconstructs every individual particle's identity.

Performance

NOvA's primary goal is to study 3 flavour neutrino oscillations via:

 $u_{\mu}
ightarrow
u_{\mu}$, $u_{\mu}
ightarrow
u_{e}$

 $ar{
u}_\mu o ar{
u}_\mu$, $ar{
u}_\mu o ar{
u}_e$

Fermilab

Far Detector

- proven to do good feature extraction for NOvA.
- can use existing pixel maps as input.
- designed for fast inference on CPU.

Trained with **beam modes combined** but **separately** for **Near** (~18 million events) and **Far** (~ 26 million events) detectors.

Network converges within first epoch.

VertexCVN is more precise than Elastic Arms

Relative performance has been studied for

different types of neutrino interaction:

• more performant on $\nu_{\rho}CC$ (even

in ND where training sample

Results

but slightly less accurate.

population is small).

• less performant on NC.

NOvA Simulation 3D Distance bitrary $- \nu_e CC$ 0.2

VertexCVN performance is **largely insensitive** to the true position of the vertex.

level prediction.

 Presence of electron prong impactful for $\nu_{\rho}CC$.

context necessary to make event-

different types of prong for providing

• NC depends on photons from a neutral pion.

Saliency: the derivative of a network output with respect to the input pixel.

- **Diagonal**: saliency for a particular predicted class.
- Off-diagonal: pair-wise difference saliency maps computed as positive particle minus negative particle.

https://novaexperiment.fnal.gov

NEUTRINO 2024 .

Abstract #: 406 Fermilab Report #: FERMILAB-POSTER-24-0096-V This work was supported by UK Research & Innovation

