Medium Energy Neutron Detector Response in NOvA

Miranda Rabelhofer (Indiana University) and Andrew Sutton (Florida State University) for the NOvA Collaboration DOE Grant Nos. DE-SC0010120 (IU), DE-SC0024684 (FSU)

The NOvA Experiment

NOvA is a long-baseline neutrino experiment based at FNAL, USA * Selectable ν_{μ} or $\bar{\nu}_{\mu}$ dominated beam * PVC cells filled with liquid scintillator 67% carbon, 16% chlorine, 11% hydrogen Alternating horizontal and vertical planes result in two views that are merged for 3D reconstruction

Neutron Modeling

The Visible Neutron Selection

Understanding Neutrons in NOvA

The NOvA ND is comprised of planes of PVC cells * Related energy depositions in

cells are grouped into "prongs".

12000

10000

8000

6000

4000

2000

Fermilab

- * Typical mean free path is ~35 cm, driven largely by interactions on ¹²C
 - Hits will be away from the neutrino interaction vertex

Neutron-related uncertainties are a leading systematic

* Neutrons carry away energy unseen

* Degrading neutrino energy estimation performance

Geant4¹

Detector response is modeled with Geant4 along with a custom light and electronics model

- * Geant v4.10.04 with the QGSP_BERT_HP physics list
- * Bertini intranuclear cascade statistically produces final state particles

Visible energy from inel. scat. is kinematically limited

The Selection Algorithm

The selection relies on prongs deposited by daughter particles of neutron scatters. The selection keeps: * Prongs further than 20 cm from the neutrino interaction vertex. * Prongs with less than 6 cell hits.

Performance on NOvA's Standard Geant Simulation

MENATE^{2,3}

Alternative medium energy (20-@(100) MeV) neutronon-carbon inelastic scattering model * Implemented as a G4HadronicInteraction to utilize

Geant4's process and model handling

* Final states determined by measured cross-sections NOvA Simulation

$$12C^{*} + n' + \gamma \rightarrow 12B + p$$

$$9Be + \alpha \rightarrow 11B + p + n \rightarrow 11C + 2n \qquad 9Be + \alpha \rightarrow 11C + 2n \qquad 9Be$$

The neutron prong selection: * Identifies 72.9% of visible neutrons (44% are visible) * On average, is 71% efficient and 61% pure. Similar results on the MENATE supplemented simulation. * Daughters of visible neutrons deposit < 10 MeV

Excess Neutron-Daughter Photons in Geant4

The Geant4 simulation has an

MENATE Improves Agreement to Data

excess compared to data.

* Largest for low energy prongs. * Only where photon-daughter prongs exist.

CNN trained to identify daughter prongs has similar excess. * Double photon peak hints at excess caused by photons from [§] 100 different scattering processes.

Refs. [1] "GEANT4 Physics Reference Manual, Release 10.4; [2] P. Désesquelles, et al., NIM-A 307 (1991) 366-373; [3] Z. Kohley, et al., NIM-A 682 (2012) 59-65

Photon Daughter Multiplicity