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The X-ARAPUCA Light Traps

Preliminary Results

Generative Adversarial Networks

The problem at hand
The X-ARAPUCA is the latest iteration of a family of devices capable 

of detecting single photons from liquid argon scintillation, serving as the 
building blocks of both DUNE's and SBND's Photo Detection System. 

Along with the instrumentation for the device, a full physics 
simulation called ArapucaSim was developed to be able to replicate the 
observed efficiencies of real devices. This makes it a useful tool for 
looking for alternatives to both materials and geometries. 

However, there's a computational bottleneck when simulating the 
dichroic filters, which are in charge of trapping the photons inside the 
X-ARAPUCA's. This stage of the algorithm plagues the simulation's 
efficiency. 

Here, we present an alternative model that shifts the computational 
load to a previous stage, namely the training of a Generative Adversarial 
Network (GAN), informed by a realistic optical model. Our hypothesis is 
that the GAN could learn the general physical behaviour of a given filter 
while being able to mimic the realistic limitations of manufacturing, 
including the material characteristics and the thin film's structure.

By achieving a well trained model, only a forward propagation will be 
necessary during the ArapucaSim runtime, with inputs based on the 
photon's wavelength and incidence angle, as well as the real filter 
transmission curve. This calculation is faster than using a transfer 
matrix model and at least as fast as interpolating a fine-grained table 
with the filter's characteristics. 
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Generative Adversarial Neural Networks (GANs) are a specialized architecture used for creating synthetic data that 
approximates the original samples [4, 3]. They consist of two key neural networks: the generator and the discriminator, both of 
which are trained together. The discriminator’s objective is to differentiate between actual and fake inputs. The generator 
receives as input a latent array formed of random numbers and is intended to create fake samples that can trick the 
discriminator. This adversarial process forces both networks to improve their performance iteratively, resulting in
the generator creating more realistic data over time. 
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The ArapucaSim Software

Light coming from the liquid Argon scintillation reaches 
the device's acceptance window. The first layer (1) is a thin 
coating of wavelength shifter, whose emission spectrum fits 
within the passing-range of the next layer (2), a dichroic filter 
(this work's main object). The third layer is a waveguide (3) 
doped with a second shifter, which now brings the photons' 
energies even lower, so that light can't go back through the 
filter. The converted light if guided to a set of silicon 
photomultipliers (4).

incoming photons

This is an energy diagram 
showing how each of the X-ARAPUCA’s 
optical elements affect the photons as 

they go through the system 
(from left to right).

By design, all the emission and absorption spectra 
have to match from end to end, connecting the original 
light signal to the SiPM sensors.

In particular, the first layer ∎ (e.g. pTP) emits light 
isotropically, so that at most 50% is directed inwards. 
When reaching the second shifter ∎ (e.g. EJ286), the 
doping concentration is calculated so that at least 99% of 
the light reaching it is converted, following its emission 
spectrum  ∎ .

 

The dichroic filters are composed of a stack of thin films 
deposited on a glass substrate. The composition of the optical 
assembly is unknown. The filter's transmission is measured for 
different angles of incidence. The filter's passing-range is tuned 
to the previous layer's emission, at 45о of incidence.

All the com
ponents of an X-ARAPU

CA Dualcell

● It uses the Geant4 framework as its backbone, expanding on its 
functionality by adding new models and materials specific for 
the describing the  X-ARAPUCA.

● ARAPUCA::Materials is a materials library where all the data 
from every component is store and organized. Each material 
representation is validate independently and can be accessible 
by the simulation during runtime.

● ARAPUCA::Physics is a collection of models designed and 
validated by experimental data. This library includes a new 
scintillation model and the model for the dichroic filters.

● ARAPUCA::Geometry is a geometry handler, where each model 
of the ARAPUCA family is built by calling materials and models 
from the other libraries. The handler can be used to simulate a 
single module or place it in more complex setups.

The X-ARAPUCA is a family of devices tailored to each 
experiment's goals. On the left we see the exploded model of a 
Dual Cell, the model produced for the Short Baseline Near 
Detector (SBND).

∎ G10 frame
∎ Dichroic filters
∎ Vikuiti reflectors
∎ Doped waveguide
∎ SiPMs

The ArapucaSim is used to study the device's response 
when materials and geometry are changed, being an integral 
part of its development cycle.
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Transfer Matrix Model
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The most accurate physical description of a thin film 
assembly is the Transfer Matrix Model (TMM). This 
calculates how the phase of an electromagnetic wave 
changes when crossing from one medium to another.

Each layer r with complex refraction index Nr=n+ik 
shifts the wave's phase by δr , given by

where the wave λ with incident angle Өr crosses a thin layer 
with thickness dr.

The whole assembly with q layers is represented by the 
product of matrices which transfer the incident wave's phase 
from the first medium r=1 up to the last one r=q. This is 
then applied over the substrate with admittance ηm, resulting 
on the assembly's characteristic matrix [B,C].

The incident angle is related to all the internal angles 
through Snell's law:

From the characteristic matrix [B,C] and the 
admittance of both the incident medium η0 and the 
substrate ηm, it is possible to obtain the optical 
assembly's reflectance R, transmittance T and 
absorbance A.

Here we used the TMM to model a hypothetical filter with only two types of layers, namely silicon dioxide and tantalum 
pentoxide. The layers' thickness is calculated in order to produce low-pass filter cutting at 450nm. The assembly is 20 layers 
tall, alternating between the two materials, deposited on top of a boron silicate glass, which has a natural cutoff at 300nm, 
creating a band-pass filter.

The resulting filter exhibits the 
desired behaviour. The upper 
bound of the passing band 
depends on the incident angle, and 
so does the total transmittance. 
The lower bound is independent of 
incidence since the cutoff is a 
property of the substrate glass.

Mock Filter Analysis

Since it is not possible to know the composition of a commercial filter, a mock analysis was carried out, using this 
hypothetical filter as a model. Random deviations from the ideal design were introduced in order to make it sufficiently different 
from the model, thus creating a minimal discrepancy to minimise biases coming from the neural network.

The GAN model

The generator receives as input the latent random array. It is 
formed by two main sectors, the first one (Transmittance sector) 
is responsible for regressing the transmittance and the second 
sector (angle) is responsible for encoding the angle information. 
The structured outputs of the sector are concatenated and the 
generator outputs a 126+1 array, namely, the transmittance curve 
and the associated angle. 

The discriminator receives the concatenated transmission curve 
and its respective angle and outputs a single classification value.

The so-called Wasserstein generative adversarial network (WGAN) 
is implemented. The WGAN is a specific type of GAN that aims to 
address the challenges associated with training instabilities and 
potential collapse as observed in conventional GANs. The 
Wasserstein distance is employed by WGAN as a metric for 
quantifying the dissimilarity of probability distributions. The 
utilization of distance-based techniques ensures the attainment 
of smoother gradients and, in principle, mitigates the occurrence 
of vanishing gradients, a common factor contributing to the model 
collapse.

The WGAN model

In addition to the use of the Wasserstein distance 
within the loss, also augmentation of the number of 
layers and neuron count is done. he network consists
of two distinct sectors designed to process the 
transmittance and angle individually. The results for
each sector are combined and undergo additional 
processing layers to regress only the transmittance 
curve corresponding to the inputted angle. The 
discriminator is designed to independently monitor 
the transmittance and angle by utilizing two distinct 
sectors too. The combined outputs are then 
forwarded to a final sector, which produces a 
classification of the inputted transmittance curve and
its connection with the inputted incidence angle

The generator receives separately the latent array and 
the angle as input, and processes them through two 
split sectors. The sectors’ outputs are concatenated 
together and an additional sequence of dense layers 
is added for further processing, outputting the 
respective transmittance curve. 

The discriminator also receives the transmittance 
and angle inputs separately. It processes and merges 
them. The merged output is further processed by a 
new sequence of dense layers that output a single 
classification value.
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The mock filter was represented by a set of 500 transmittance 
curves, varying in incidence angles from 0 to 85 degrees.

The training section was set so that the only inputs of the 
model are the wavelength and the incidence angle. In order to 
probe the efficiency of the model, training sections were 3000 
epochs long.

After 3000 epochs of training, the NN model still struggles 
representing the mock film. Without employing artificial penalties, 
the model allows for unphysical values for the transmittance, i.e., 
smaller than zero and larger than one. New training sections are 
needed, most likely with a different set of hyperparameters.

In order to be successful, our model needs not only to be able 
to reproduce the mock filter produced by the TTM, but also to do 
that in meaningful physical way. In the future, this learning will be 
transferred to a new model where the inputs are expanded to 
include a limited set of transmission curves from the real filter.

Discrete representation of the mock 
filter used in this study.

   NN model's response as a function 
of wavelength and incidence angle.


