Ulysse Virginet*
On behalf of the T2K HA-TPC Group

- T2K is a long-baseline neutrino oscillation experiment which has taken data in Japan since 2010
- Measure the $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ disappearance and the $\nu_{e}\left(\bar{\nu}_{e}\right)$ appearance at Super-Kamiokande in Kamioka, Gifu, Japan in an initial $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)$ beam produced at the J-PARC in Tōkai, Ibaraki, Japan
- Both J-PARC beam line and ND280 (Near Detector located 280 m downstream of the graphite target) have recently been upgraded
- Upgraded ND280 contains 2 new HA-TPCs characterized at several test beam campaigns [1-4]
- The upgrade was completed in May 2024 and has already started to take data!

The ERAM technology

Each Module Frame is equipped with 8 Encapsulated Resisive Anode MicroMegas (ERAM)

- Thanks to layers of insulator and glue, charge deposit is spread on neighboring pads

$$
\rho(\vec{r}, t)=\frac{R C}{4 \pi t} e^{-\frac{r^{2} R C}{4 t}}
$$

- Compared to bulk MicroMegas used for vertical TPCs, spatial resolution is reduced from 1.2 mm to 0.5 mm (for similar pad size $1 \times 1 \mathrm{~cm}^{2}$)

The $\log Q$ method

- Clusters of pads are done in an orientation perpendicular to track trajectory
- Track position in each cluster is reconstructed thanks to the logarithm of the ratio of waveforms' amplitudes in the pads:

$$
d x=\alpha_{10} \ln ^{3}\left(\frac{Q_{1}}{Q_{0}}\right)+\beta_{10} \ln \left(\frac{Q_{1}}{Q_{0}}\right) \quad d x=\alpha_{21} \ln ^{3}\left(\frac{Q_{2}}{Q_{1}}\right)+\beta_{21} \ln \left(\frac{Q_{2}}{Q_{1}}\right)
$$

The Full WF method

- Use all the track hits (weighted by their Qmax values) to define a (\mathbf{u}, \mathbf{v}) working frame
- Put point charges (all of them are free parameters) on the \mathbf{v} axis, separated by a length Δv ($5 \sim 10 \mathrm{~mm}$)
- 5 other free parameters are used to define track trajectory: $u_{0}, d u / d v, q / p, t_{0}, d t / d v$
- Predict the waveform engendered by those point charges in the surrounding pads
- For N points charges, adjust the $5+\mathrm{N}$ fit parameters to minimize the χ^{2} between observed waveforms and predicted ones:

$$
\chi^{2}=\sum_{i(\text { pad })} \sum_{j(t i m e b i n)} \frac{\left(Q_{i, j}^{\text {obs }}-Q_{i, j}^{P \text { Predic }}\right)^{2}}{\sigma_{i, j}^{2}}
$$

HA-TPC sketch view

- Pattern recognition is performed by using A^{*} algorithm

The pattern recognition

$\operatorname{Cost}_{\mathrm{H}}($ node \rightarrow end $)=f_{\text {heuristic }} \sqrt{\Delta_{x}^{2}+\Delta_{y}^{2}+\Delta_{z}^{2}}$

- Optimal path is found by minimizing the heuristic cost $\left(\operatorname{Cost}_{H}\right)$
- This value represents the sum of the individual costs to join pads between them

Performances

- This new method, exploiting the full waveform information improves a lot the momentum resolution compared to the currently used $\log Q$ method

- Momentum resolution as a function of track length, $1 / L^{5 / 2}$ dependence
- $\mathrm{p}=800 \mathrm{MeV} . \mathrm{c}^{-1}$ in both plots

