Probing Invisible Neutrino Decay using Oscillations ID #381 of Atmospheric Neutrinos at IceCube DeepCore

Anil Kumar (DESY, Zeuthen, Germany) NEUTRIND DESERVATORY Anil Kumar (DESY, Zeuthen, Germany) On behalf of the IceCube Collaboration anil.kumar@desy.de

1. IceCube Neutrino Observatory

3. Invisible Neutrino Decay

- Neutrinos could decay via invisible mode where either the decay products are sterile neutrinos or have sufficiently low energy to avoid detection [5 9].
- The heaviest mass eigenstate v_3 (normal ordering) decays to a fourth sterile neutrino v_4 with a lifetime of τ_3 in the rest frame

 $\nu_3 \rightarrow \nu_4 + J$

- where J is a pseudo-scalar singlet, or Majoron.
- We assume that there is no mixing between the three active neutrinos and the sterile neutrino, so it cannot oscillate back into an active state.
- Neutrino interactions inside ice produce secondary charged particles, which emit Cherenkov photons.
- Cherenkov photons are detected by the digital optical modules (DOMs).
- **DeepCore** is the bottom central region of IceCube having closely spaced DOMs with sensitivity to low-energy neutrinos at the **GeV scale**.
- DeepCore observes atmospheric neutrinos having
- Baselines: ~ 20 km to 12750 km
- \bullet Wide energy range: a few GeV to more than TeV
- In this analysis, we use DAEMON flux for atmospheric neutrinos [1].

2. Events at IceCube DeepCore

Modified Hamiltonian in the flavor basis:

Probabilities of v_{μ} (left) and v_{e} (right) to oscillate into active flavors.

- For demonstration purpose, the value of a_3 is taken to be larger than our sensitivity.
- The yellow regions appear due to the decay of v_3 to the sterile state v_4 .

4. Analysis

Cascades

 E_{v} [GeV]

Mixed

Tracks

 E_v [GeV]

Track-like (v_{μ} CC, Left) and cascade-like (v_{e} CC, Right) events at DeepCore [2].

Signals:

- ν_μ, ν_e, ν_τ
- Predominantly DIS interactions
- Operate above τ production threshold (3.5 GeV)

Backgrounds:

- Atmospheric muons
- Random detector noise

Event Selection

- Filters at various levels reduce
- backgrounds such as noise and

atmospheric muons by more than 6 orders of magnitude.

• Signal reduces by only 1 order of magnitude.

Difference of simulated events with decay ($\alpha_3 = 1 \times 10^{-1} \text{ eV}$) and without decay ($\alpha_3 = 0$) for the nominal choices of oscillation and systematic parameters.

	Expected Events (9.28 yr)
Cascades	58663
Mixed	36853
Tracks	50729
Total	146245

Fit is performed over uncertainties of:

• Systematic parameters: DAEMON flux, cross section, detector response, neutrino normalization, and cosmic muon background normalization

- Oscillation parameters: $\theta_{_{23}}$ and $\Delta m^2_{_{31}}$

Sensitivity using Simulated Data at IceCube DeepCore

• The same filters are applied to data as well as simulated Monte Carlo (MC).

Reconstruction based on Convolutional Neural Network (CNN) [4]

- Trained for neutrino energy, arrival direction, interaction vertex, particle identification (PID), and atmospheric muon classification
- High statistics (~150k)
- Analysis using:
- cascade-like, mixed & track-like events corresponding to PID bins: [0, 0.33, 0.39, 1]
- E_{reco} : 20 log bins in [5, 100] GeV, $cos\theta_{reco}$: 20 linear bins in [-1, 0]

References

[1] Yañez, Fedynitch, PRD 107 (2023) 12, 123037[4] IceCube Collaboration, arXiv:2405.02163[7] Gomes et al., PLB 740 (2015) 345[2] Terliuk, Ph.D. Thesis, (2018), DOI: 10.18452/19304[5] PLB 98 (1981) 265, PLB 99 (1981) 411, PLB 142 (1984) 181[8] Choubey et al., JHEP 08 (2018) 141[3] IceCube Collaboration, PRD 108 (2023) 1, 012014[6] Gonzalez-Garcia et al., PLB 663 (2008) 405[9] Ternes et al., PRD 109 (2024) 7, L071701

The XXXI International Conference on Neutrino Physics and Astrophysics (Neutrino 2024), June 16-22, 2024, Milan, Italy

