• Exploring New Physics with PandaX-4T Low Energy Electronic Recoil Data

Dual Phase Liquid Xenon TPC

The PandaX-4T experiment operates a dual-phase liquid xenon time projection chamber (LXe TPC) that is located in China Jinping **Underground Laboratory.** Energy release in xenon will produce and ionized electrons. **Electrons drift up under the influence of a downward electric field** in the SV, and the d aved electroluminescence sign are generated in the gaseous xenon region with a much stronger electric field.

Why LXe TPC? 1. Large A: large cross section & self-shielding; 2. 3D reconstruction and fiducialization; 3. Scalable; 4. Discrimination power.

Background Level

- Tritium spectrum identified in the data, which is likely originated from the tritium calibration at the end of PandaX-II; Tritium estimation comes from pre-fit of S1 spectrum, since no extra experimental constraints;
- Beta events from ²¹⁴Pb/²¹²Pb is monitored by (5.5/8.8 MeV) α of 222 Rn/ 220 Rn. The activity of 214 Pb is estimated to be 4.50 ± 0.20 μ Bq/kg (Run 0) and 5.52 ± 0.25 μ Bq/kg(Run 1), and ²¹²Pb is estimated to be 0.28 \pm 0.08 μ Bq/kg;
- Beta events from ⁸⁵Kr based on the delayed $\beta \gamma$ coincidence events of meta-stable state 85m Rb, the activity of 85 Kr is estimated to be 0.52 \pm 0.27 ± 0.01 ppt and $0.94 \pm 0.28 \pm 0.02$ ppt for Run 0 and Run 1;

Xinning Zeng

PhD Student on behalf of PandaX xinningzeng@sjtu.edu.cn

Detector Response

- 1. The detector response of low energy electronic recoil events is modelled by NEST (Noble Element Simulation Technique);
- 2. Detector parameters (e.g. recombination rate, photon detection efficiency) are fit to Rn calibration data using unbinned likelihood fitting with emcee; 3. Calibrated NEST also fits well with sliced calibration data.

- Radioactivity of materials of the detector are estimated from highpurity Germanium counting-station and detailed fit of 0.44 - 2.6 MeV spectrum.
- Long lived xenon isotopes, including ¹³⁶Xe and ¹²⁴Xe are calculated based on the measured half-life; L-captures (5.2 keV) of cosmogenically activated ¹²⁷Xe in Run 0 is fitted from K-capture (408 keV);
- **Solar neutrinos are calculated using Standard solar models and the** • standard model anomalous magnetic moment;
- Accidental backgrounds, resulting from the random pairing of S1 and S2 signals are estimated to be 7.6 \pm 2.4 (Run 0) and 7.1 \pm 2.3 (Run 1).

Dataset	${\rm Run0~Set4}$	$\operatorname{Run0}$ Set5	Run1 Set1-4	Run1 Set 5	Run1 Set6
Rate $[ton^{-1} \cdot day^{-1}]$	3.23 ± 0.20	1.88 ± 0.15	0.25 ± 0.05	0.23 ± 0.05	0.23 ± 0.05

Data and Bestfit

Details can be found in https://doi.org/10.48550/arXiv.2403.04239

Axions and Neutrinos from Sun

- **1.** Axion production in the sun: Atomic recombination and deexcitation (ARD), Bremsstrahlung, and Compton (ABC); Primakoff effect; M1 nuclear transition of ⁵⁷Fe (14.4 keV).
- 2. Neutrinos may have abnormally large magnetic moment due to the Majorana nature or exotic new physics beyond the Standard Model.

Detection in PandaX-4T: 1. axio-electric effect;

2. inverse Primakoff effect; **3.** neutrino-electron scattering.

)

2024

16-22,

lune

NEUTRINO 2024

International

IXXX

Sensitivity to New Physics

Based on CL_{s+b} technique, model-independent sensitivities with 90% confidence level (C.L.) of axion couplings $(g_{Ae}, g_{Ae}g_{AN}, g_{AV})$, and neutrino magnetic moment μ_{v} are derived.

Acknowledgement: Thanks for the mentioned theoretical works and the photographer Shibo Zhang