Probing new physics with high-energy electronic recoil in XENONnT

M. Pierre¹, on behalf of the XENON Collaboration

¹ Nikhef and the University of Amsterdam, Science Park, 1098XG Amsterdam, Netherlands

maxime.pierre@nikhef.nl

1. The XENONnT Dark Matter Experiment and its Physics Program

Dual-phase Xe Time Projection Chamber:

Light and Charge readout

- Prompt scintillation signal (**S1**) $oldsymbol{O}$
- Secondary proportional scintillation signal in GXe from

Motivation to study double-weak processes in XENONnT

Multiple isotope candidates with different decay mode are

naturally present in the xenon target: ¹²⁴Xe, ¹³⁴Xe, ¹³⁶Xe.

- Help to test nuclear models.

drifted electrons (S2)

Event reconstruction

- **3D** Position:
 - → Z from drift time
 - → (X, Y) from PMTs hit pattern
- **Energy:** combination of S1 & S2 \bigcirc
- **Multiplicity:** number of S2s \bigcirc
- Interaction type:
 - Electronic (ER) vs Nuclear (NR) Recoil
 - S2/S1 ratio

We can reconstruct different type of interaction \rightarrow We can search for different physical proccesses.

Dark Matter interaction & much more!

Probe Beyond Standard Model physics.

$0\nu\beta\beta$: $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

- Lepton number violation
- Majorana neutrino

$$2\nu\beta\beta: (A,Z) \to (A,Z+2) + 2e^- + 2\bar{\nu}$$

BSM physics can induce spectral shape distortion [1, 2, 3]

Signal: Measure energy deposit from the two emitted electrons **→** ER

2. ER measurements from few keV to $Q_{\beta\beta}$

- First search for new physics in low-energy ER with XENONnT first science run [4].
- Lowest ER rate ever \bigcirc achieved with such detector.

We use energy, position, and multiplicity information to constrain our background models. This enables precision measurement of the ¹³⁶Xe $2\nu\beta\beta$ decay spectral shape.

3. Background Model for $2\nu\beta\beta$ Decay

Internal Background Models

Homogeneously distributed. $oldsymbol{O}$

Source	Energy [keV]	Constrain source
²¹² Pb	0 - 600	MS fit
²¹⁴ Pb	0 - 1000	MS fit
⁸⁵ Kr	0 - 687	RGMS meas.
solar ν	0 - 210	Borexino flux
¹²⁴ Xe 2 <i>v</i> ECEC	64.3	Half-life/ abundance
¹³³ Xe	75 - 400	n-activation study
^{131m} Xe	163.9	n-activation study
^{129m} Xe	236.2	n-activation study

Exploit the different features of the new physics signal and detector background in the inference.

→ Use MS high-energy gamma spectra to constrain the level of radiogenic contaminants in detector materials.

4. $2\nu\beta\beta$ Spectral Shape Measurement

3D binned likelihood fit of SS events where each energy bin is fitted independently: **Observed number of events per bin i** $k_{obs,i}^{SS} \ln \mu_i^{SS} + G_{\text{constraints},i}$ $-\ln \mathscr{L} = \Sigma_i \left[\mu_i^{SS} \right]$ Relative number of events for source j **Expected number of** $\mu_i^{SS} = N \sum_i n_i f_i^{SS}$ events per bin i, with: 'DF of source j

Open path to precision measurement of the $2\nu\beta\beta$ decay of ¹³⁶Xe full energy spectrum...Stay tuned!

[1] Phys. Rev. D 103, 055019 REFERENCES [2] Phys. Rev. D 102, 051701(R)

[3] Phys. Rev. Lett. 125, 171801 [4] Phys. Rev. Lett. 129, 161805

