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 2. Methodology
• Neutrino flavor can be determined by outgoing charged 

lepton from CC interactions 

• Light seen by PMTs of an LS detector is a superposition 
of light generated from many points along the track

• Shape of light curve received by each PMT depends on 
angle w.r.t. track direction , track starting and stopping 
position, and particle type - different dE/dx

• Directly feeding full waveform from all PMTs are 
computationally expensive - features that reflects the 
waveforms are extracted to reduce data volume

• Features include first fit time (FHT), total PE 
(nPE), peak charge, peak time, and others such 
as median time and four moments of the 
waveform distributions (more details in Ref. [1])

  Separation
• The difference between each CC interactions 

are also reflected by the final state hadrons 
from  interactions

• Final state neutrons are captured by hydrogens 
in LS and emit a 2.2 MeV in ~ 200 µs, create 
delayed triggers after primary interactions

• Such events can be selected from delayed trigger 
with high efficiency

• The difference between  interactions can also be 
reflected by the hadronic energy fraction variable 

, reflected by observables 
such as neutron multiplicity

• Expect to provide additional power especially for  
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 1. Overview 
• The J i angmen Underground Neutr ino 

Observatory (JUNO) is designed to determine 
Neutrino Mass Ordering (NMO) with a large 
homogeneous liquid scintillator (LS) detector by 
measuring reactor electron antineutrino ( ) 
oscillations

• NMO sensitivity can be enhanced by a 
combined analysis on reactor and 
atmospheric neutrino oscillations

• Typical LS detectors are designed for low-energy 
neutrinos -  oscillations measurements using 
LS detectors has never been performed prior to this study

• Good capability of reconstructing atmospheric neutrinos are crucial

• Different neutrino flavor exhibits different oscillation probabilities 
between two neutrino mass order, precise particle identification (PID) 
for atmospheric neutrinos is critical
• Signal Charged-Current (CC) vs Background Neutral-Current (NC)

• Muon (anti)neutrinos vs electron (anti)neutrinos 

• Neutrinos vs Antineutrinos 

• Demonstrate the capability of our ML approach in performing PID for 
atmospheric neutrinos
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 5. Results

• Observe AUC score as a 
function of  for both 
strategies show consistency 
for all 3 classification tasks
• Comparison between directly 
predicting 5 labels verses combining 
predictions from 3 separate models 
(3+2 label)

•  The agreement suggests that the models considered are capable of directly classifying the 
5 categories

•   Assess the importance of additional neutron capture features by comparing results with/
without these features for  classification 

•  Efficiencies and purities can be tuned to obtain final selected sample 
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 3. Different strategies
To process the 3-dimensional input of features from PMTs on a sphere, two strategies with 
different deep learning models are developed.

 Strategy 1

• Point cloud-based model: PointNet++, DGCNN
• Features extracted from primary triggers are fed into the PointNet++ 

• For neutron capture candidates, taking 3D point clouds [x, y, z] as inputs to a separate 
DGCNN model

• Preserves multiplicity and spacial distributions of neutrons, minimise the information loss

• Concatenate with PointNet++ model with a FC layer for final output

 Strategy 2

• Spherical image-based model: DeepSphere
• Designed to maintain rotational covariance

• Multiple neutron-candidate triggers are merged into one, from which FHT and nPE are 
extracted and feed into model together with primary trigger features

• All features are at the same PMT-level, fast and easy for model to handle the input

Both strategies uses all features from primary triggers and delayed triggers 

2-step approach: 3-label classification (NC, , ) followed by  classification,  
expect the ML models can each learn to specifically perform one classification tasks, either 
3-label or 2-label.
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 4. Evaluate model performance
• Training sample consist of ~25k events for all 5 categories considered ( -CC, -CC, 

-CC, -CC, NC), with flat energy spectrum [0, 20] GeV to avoid bias in model training

• Testing sample consist of ~5k events for all 5 categories

• ML models used by the two strategies are trained using labelled data, where the labels 
indicate either NC/ /  for 3-label model, or  for 2-label model

• The Area Under the Receiver operating characteristic (ROC) Curve (AUC) are used to 
assess models’ performances (optimising signal efficiency/background efficiency)

• Does not depend on the choice of score cut

• Not affected by class-imbalance in the dataset

νμ ν̄μ νe
ν̄e

(−)ν μ
(−)ν e ν/ν̄

Combing all 
PMTs

Pictures of PMT 
features

ML models

(3-label)

etc…

ML models ML models

( )νe/ν̄e

Output Scores
5 vs 3+2 label

Work in progressWork in progress Work in progress

mailto:wingyanma@sdu.edu.cn

	1. Overview
	3. Different strategies
	Strategy 1
	Strategy 2
	2. Methodology
	Separation
	5. Results
	4. Evaluate model performance
	References

