# Atmospheric neutrino oscillation analysis with neutron detection in SK-Gd

Gd

Shintaro Miki (Kamioka Obs., ICRR) smiki@km.icrr.u-tokyo.ac.jp

#### Abstract

1000m underground

50kton

In atmospheric neutrino oscillation analysis, aiming mainly at mass ordering determination, neutron information available in SK-Gd improves  $v/\bar{v}$  discrimination capability. Resolutions of energy and direction are also improved by accounting for more information carried by the hadronic system. Both improvements contribute to sensitivities to mass ordering. Data - MC consistency has been confirmed and data fit is ongoing.

# 1. Super-Kamiokande(SK) and SK-Gd

 $\overline{\nu_{\mu}}$ 

• SK is a 50-kton water-Cherenkov detector.

SK7

Doped with Gadolinium(Gd) since 2020
 to enhance neutron efficiency.

 No Gd
 0.01% Gd
 0.03% Gd

 ~25% eff.
 ~50% eff.
 ~65% eff.

 2020
 2022

SK6

SK5

# 2. Atmospheric neutrino studies SK

- Atmospheric neutrino is sensitive to mass ordering (MO),  $\delta_{CP}$ ,  $\Delta m_{32}^2$ , and  $\theta_{23}$ . MO will limit lepton flavor mixing model.
- Observing how  $\nu$  oscillates in earth core is important to determine MO.
- $E_{\nu}$  and  $\overrightarrow{d_{\nu}}$  resolutions : To see core-crossing  $\nu$ .



 $v/\bar{v}$  discrimination : They oscillate differently.



Energy

Direction?

 $\nu$  or  $\overline{\nu}$ 

#112

## 3. How are neutrons useful in atmospheric neutrino analysis?

**1**  $\nu/\bar{\nu}$  discrimination

- Without neutron tag:  $\nu$ -like if **decay-e** is tagged.
- With neutron tag  $: \overline{v}$ -like if **neutron** is tagged.

 $\nu_e$ additior Δ Valid only with  $\pi$  production mode. Valid with most modes. • Sample purity  $\rightarrow$ Without neutron tag (MC, Multi-GeV, e-like) 80 100 20 40 60  $\overline{\nabla}_{e} - \text{like}$   $\overline{\nabla}_{e} - \text{like}$  Neutron tag (pure water)  $\text{Hdecay-e > 0 } \rightarrow \nu_{e} - \text{like}$ 60 40 Neutron tag (pure water) else:

# **2** Event reconstruction

40m

- Reconstruct  $E_{\nu}$  and  $\overrightarrow{d_{\nu}}$  with neutron momentum estimated from its displacement assuming  $\overrightarrow{p_n} \propto \overrightarrow{PC}$ .
  - New method: Reconstruct  $E_{\nu}$  and  $\overrightarrow{d_{\nu}}$  $\rightarrow$  Better resolution for neutrinos

 $\rightarrow$  Gd

- - Neutrons are scattered before captured by Gd, but still we can assume  $\overrightarrow{p_n} \propto \overrightarrow{PC}$ .

— Reconstruct  $E_v$  and  $d_v$  with neutrons

..... Ring energy, direction (Previous method)

Resolution improvements in 0.01%Gd MC:



Previously: Use  $E_l$  and  $d_l$ 

### 4. Physics sensitivity

- Sensitivities to MO and other oscillation parameters, shown as  $\Delta \chi^2$  from best-fit point.
- First ~2 years in SK-Gd (SK6 period) is considered: Livetime 564.4 days.
- Sensitivity to MO is improved by 21% with Gd, and by another 10% with new reconstruction.

| Sensitivity to mass ordering                                       | $\Delta \chi^2$ |
|--------------------------------------------------------------------|-----------------|
| Reconstruct $E_{\nu}$ and $\overrightarrow{d_{\nu}}$ with neutrons | 0.225           |
| Ring energy and direction<br>(Previous method)                     | 0.204           |
| Pure water case                                                    | 0.169           |



Normal

#### 5. Data - MC comparison in SK-Gd

• Reconstructed  $E_{\nu}$  and  $\cos \theta_{\nu}$  distributions agree between data and MC.  $\rightarrow$  Sample classification and new reconstruction work well.



#### 6. Summary and Prospects

- In SK-Gd, neutron efficiency is enhanced, and atmospheric neutrino oscillation analysis will be improved in

  v/v discrimination,
  Energy and direction reconstruction by estimating hadron momentum from neutron displacement.

  Sensitivity to mass ordering is improved by 21% by ①,
- and 10% by 2 with 0.01% Gd.
- Data MC consistency is confirmed.

> Data fit to obtain oscillation parameters is ongoing.