

Search for the two-neutrino electron capture with positron emission of $^{124}\rm Xe$ with the XENONnT experiment

University of Zurich

XENON

XXXI International Conference on Neutrino Physics and Astrophysics June 16-22 2024, Milan

The XENONnT experiment

time projection chamber

 The XENONnT experiment [1] operates a dual-phase liquid

Two-neutrino electron capture with positron emission ($2\nu EC\beta^+$) of ^{124}Xe

xenon time projection chamber (TPC) located at LNGS designed to directly detect dark matter

- 5.9 tonne active mass monitored by 494 PMTs, enclosed in a neutron veto and a water Cherenkov muon veto
- 3D position and energy reconstruction via prompt light signal (S1) and secondary delayed light from drifted electrons (S2)
- Electronic recoil (ER) background rate of 16.1 events/(keV ·tonne ·yr) in the [1, 30] keV range [2] in the first science run (SR0)
- The unprecedented low background rate and excellent energy resolution enable the search of other rare events

- Q-value = 2.8 MeV $2\nu EC\beta^+$ $0^+ \qquad 124_{Te}$ • Predicted half-life of (1.7 ± 0.6) ·10²³ yr
- Abundance of 0.095% in natural xenon (5.6 kg in the XENONnT active mass)

Diagram of the emitted quanta and their reconstructed S2 following the $2\nu EC\beta^+$ decay

• The $2\nu EC\beta^+$ of ¹²⁴Xe decay mode with the highest probability of observation in a multi-tonne scale detector [3]

• The decay produces X-ray emission or secondary processes of Auger electrons (X_k) and γ -rays from the e^+e^- annihilation

124
Xe + $e^- \rightarrow ^{124}$ Te + $e^+ + 2\nu_e + X_k$

Expected to yield a signature with multiple S2 signals and a single S1 signal

such as **double weak decays of** ¹²⁴Xe!

Energy $[keV_{ee}]$

 Resolving individual ionisation energy depositions is essential to exploit the signature of this decay mode

Analysis workflow

Motivated by the challenge to unambiguously identify the complex decay signature in our detector

Simulation

- Signal and background events produced with the XENONnT Monte Carlo pipeline serve to train the machine learning discriminator
- To this end, the fuse [4] simulations package, which converts energy deposits into real data waveforms, is under validation for high energies

Software validation

- Precise modelling of waveform topologies is essential for accurate reconstruction of multi-scatter signals at low and high energies
 - e.g., S2 signal spread as a function of the interaction depth must match in simulations and

 Simulations - data matching for the ²³²Th calibration source are ongoing

3D diagram of the calibration u-tubes of XENONnT. The red dot represents one of the positions of the external ²³²Th calibration source

calibration data

- High accuracy to model the detector response at low energies already achieved
- Next steps to achieve the same precision for high-energy searches identified, paving the way for groundbreaking discoveries

References

- [1] E. Aprile et al. The XENONnT Dark Matter Experiment
- [2] E. Aprile et al. Search for New Physics in Electronic Recoil Data from XENONnT Phys.Rev.Lett. 129 (2022)
- [3] Christian Wittweg et al. Detection prospects for the second-order weak decays of ¹²⁴Xe in multi-tonne xenon time projection chambers Eur.Phys.J.C 80 (2020)
- [4] XENON Collaboration (2024). XENONnT/fuse: 1.3.0 (1.3.0). Zenodo. https://doi.org/10.5281/zenodo.11551366

xenonexperiment.org