Status and Prospects of the TRIDENT Deep-sea Neutrino Telescope

Donglian Xu, Iwan Morton-Blake, for the TRIDENT Collaboration Tsung-Dao Lee Institute / Shanghai Jiao Tong University

Physics Goals

What is the source of high energy cosmic rays?

Huge numbers of neutrinos are produced in the most violent processes in our universe.

Weakly interacting – neutrinos travel on long, unperturbed

paths, allowing us to probe **deeply** into these cosmic accelerators.

νε,μ,τ Example candidate cosmic ray source producing cosmic rays, gamma rays and neutrinos

The TRIDENT Detector

Hybrid Digital Optical Modules (hDOM)

- Design includes multiple PMTs and SiPMs to maximize the \bullet photosensitive area and allow for precise photon timing measurement.
- Waveforms readout for added precision, useful for v_{τ} identification

Deep-sea String Array

Favourable site for the detector located in the South China Sea.

Hemisphere of hDOM prototype with PMTs and SiPM back-end locations

Neutrino Astronomy

Aiming to answer this question **IceCube's** discovery of **high energy cosmic neutrinos** has driven the burgeoning field of high energy neutrino astronomy [1][2].

- To **understand** potential neutrino sources, future neutrino telescopes need to:
- 1) Rapidly isolate neutrinos from astrophysical neutrino sources
- 2) Efficiently measure astrophysical neutrinos of all flavours

The next-generation Tropical Deep-sea Neutrino Telescope (TRIDENT) aims to have:

- Large effective area, a wide energy range and fine direction resolution for neutrinos of <u>all flavours</u> [3]
- Strong neutrino flavour discrimination for precise flavour ratio measurements made over astronomical distances – tests for new physics [4]

Pathfinder T-REX Mission: Deployed a pathfinder experiment 3.5km

Positioned near the equator – telescope can scan the entire sky as the Earth rotates. Site is 3.5km below sea level – large depths expect to reduce atmospheric backgrounds, have milder sea currents and lower bioactivity. ~1200 strings arranged over ~8km³ in an uneven Penrose tiling layout. String arrangement aims to balance a wide energy range for a variety of potential neutrinos sources, along with boosted sensitivity to all neutrino flavours.

Control & battery module

deep at the detector site, at the end of 2021. Independent PMT and camera systems made measurements of light scattering and absorption. Measured sea current speeds, ⁴⁰K decay rates. At 3.5km, measured, $\lambda_{abs} \approx 27m$ and $\lambda_{scat} \approx 63m$ for Cherenkov light, and sea current speeds < 10 cm s⁻¹.

T-REX PMT + Camera *"Fishing" system*

R&D for Electronics, Calibration and hDOM

- Undersea power and data network under development.
- PMT and SiPM testing ongoing.
- hDOM optical calibration testing in water tank. \bullet
- hDOM acoustic positioning testing. \bullet
- hDOM production line initiation at shore station. \bullet
- hDOM design performance testing in simulation.
- String integration underway.
- DAQ and Trigger design progress. See poster #

View of LED at the end of the 10m long hDOM and calibration water tank

Ahead

Aim to deploy power distribution & data \bullet

Track and Cascade Reconstruction

Prospects

/luon trac

~O(km) long

- TRIDENT expects large effective areas $(A_{eff})^*$ for **both** tracks and cascades, while balancing good angular resolution (AR) for each interaction type.
- Improve v_e and v_{τ} flavour separation with quality hDOM light collection along with

PMT waveforms. See poster #285.

Depth ~ 3500 m

Build Phase 1 and power/data communication with island

transmission cable along with the first 10 strings

- TRIDENT Phase 1 in 2026, to serve as:
- Technology demonstration \bullet
- Measure atmospheric neutrinos ightarrow
- Environment characterization and monitoring \bullet

References

- [1] Aartsen, M. G. et al. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 342, 1242856 (2013).
- [2] IceCube Collaboration et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert.

Science 361, 147–151 (2018).

[3] The TRIDENT Collaboration, "A multi-cubic-kilometre neutrino telescope in the western Pacific Ocean", Nature Astronomy volume 7, pages1497–1505 (2023)

[4] Abbasi, R. et al. Search for quantum gravity using astrophysical neutrino flavour with IceCube. Nat. Phys. 18, 1287–1292 (2022).

Projected point source sensitivities and discovery potentials of TRIDENT [3]

