Fitting T2K Near Detector Data using Markov Chain Monte Carlo

Ewan Miller, King's College London ewan.miller@kcl.ac.uk

- Long baseline neutrino beam experiment in Japan
- Neutrino beam from J-PARC is characterised at the Near Detectors then measured again after travelling 295 km at the Far Detector

The ND280 near detector is used to constrain v flux and

fitting un-

- cross section uncertainties
- To do this, we also need to account for systematic uncertainties relating to the ND280 detector itself
- oscillated MC predictions to ND280 data
- Done by tuning MC event weights to minimise a Poissonian Log Likelihood for each sample

'ING'S

• The fits performed for this work were done using MaCh3 fitter: Bayesian Markov Chain Monte Carlo

3. Improvements for 2024

- Included new high angle (HA) and backward (Bwd) going muon samples
 - Improved phase space coverage
 - Increased statistics

- Improved Treatment of Detector Systematics
 - Estimate event-byevent weights at fit time
 - Can directly see impact of individual detector parameters

4. Cross Section Model Improvements

- Massively expanded parameterisation of the neutrino cross section model
- New parameters to cover modelling of low energy transfer
 (ω) events
- Many, many more!

Differential Cross Section, *w*

5. Markov ChainMonte Carlo (MCMC)

- MCMC performs a directed random walk around parameter space
 Efficiently samples
- posterior likelihood $L(\Phi)$
- "Accepts" proposed steps
 Φ' with probability

6. 2024 Sensitivities

0.0

With MCMC, can see full posterior distributions: New Cross

• We can see the constraining power of the ND280 fit by propagating model to far detector and looking at errors on

• Fits to fake ND280 data done d with new model

predicted event rates:	
Prior Error	Post ND Error
15.8%	2.6%
20.8%	4.0%
12.1%	2.8%
13.8%	4.7%
15.3%	2.7%
15.5%	3.5%
	Prior Error 15.8% 20.8% 12.1% 13.8% 15.3% 15.5%