

Sensitivity of the IceCube Upgrade to **Atmospheric Neutrino Oscillations**

Kayla Leonard DeHolton^{1,*}, Jan Weldert¹, Rasmus Ørsøe², and Philipp Eller² for the IceCube Collaboration * Presenter (kayla.deholton@icecube.wisc.edu), ¹ Dept. of Physics, Pennsylvania State University, University Park, PA 16802, USA ² Technical University of Munich, TUM School of Natural Sciences, Physics Department, 85747 Garching, Germany XXXI International Conference on Neutrino Physics and Astrophysics, June 2024, Milan, Italy

Energy

Reco

The IceCube Upgrade Detector:

The IceCube Upgrade is an extension of the existing IceCube detector and will be deployed in 2025-26. It features:

- Seven new strings within the DeepCore volume
- New optical module types (multi-PMT devices)
- New calibration hardware
- Denser module spacing of about 20 m horizontally and 3 m vertically, compared to 40-70 m horizontally and 7 m vertically in DeepCore
- In total more than triple the number of PMT channels with

New tools for Upgrade physics:

- Noise Cleaning: The Upgrade modules have more channels and an increased number of unwanted noise hits. Using GraphNeT [1], we train a Graph Neural Network (GNN) model to reject such noise pulses. It removes >95% of noise while keeping about 95% of the signal hits.
- **Event Reconstruction:** A similar GNN is used on the cleaned data to predict analysis observables: energy, zenith angle, and track vs. cascade classification (PID). The plots below show the reconstruction performance for neutrinos of all flavors, with energies between 1-500 GeV. Our primary signal region is at 25 GeV.

respect to the current IceCube detector configuration

The Upgrade will significantly enhance IceCube's GeV capabilities.

[1] JOSS 8(85) 4971, github.com/graphnet-team/graphnet

Analysis Techniques:

- **Event sample & analysis histogram:** The simulated event sample contains 315,000 neutrinos using 3 years of the Upgrade. The analysis is performed using histograms binned in energy, cos(zen), and PID. The varying oscillation baselines are given by cos(zen).
- **IC86+IC93 Combined Analysis:** The analysis sensitivities combine the Upgrade (IC93) distribution shown on the right with a similar one that contains events from 12 years of IceCube DeepCore (IC86).
- **Systematic Uncertainties:** The sensitivities include a full set of nuisance parameters accounting for uncertainties in atmospheric flux, cross sections, and detector effects. For more details, see [2].

Expected performance with the IceCube Upgrade:

Atmospheric Neutrino Oscillation Parameters

Sensitivity to the mixing parameters θ_{23} and Δm_{32}^2 . Combines 12 years of IceCube DeepCore (IC86) with 3 years of the IceCube Upgrade (IC93).

Median

Neutrino Mass Ordering (NMO)

- Sensitivity to neutrino mass ordering as a function of livetime for two scenarios: with and without the Upgrade strings.
- The sensitivity strongly depends on θ_{23} .
- The shaded bands correspond to the preferred 3σ range from NuFit 5.2 [3].
- The new strings drastically enhance the

A scenario w/ (solid) and w/o (dotted) the new strings is compared in each plot.

We assume two different true scenarios provided by the NuFit global fit: the top plot uses NuFit 5.2 w/ SuperK (SK) as injected truth, while the bottom plot assumes NuFit 5.2 w/o SuperK [3].

[2] arXiv:2307.15295 [3] JHEP 09 (2020) 178, nu-fit.org [4] Phys. Rev. D 99, 032007 (2019)

sensitivity to NMO. With 4 years of the Upgrade, we expect $1.5-3\sigma$ sensitivity.

Tau Neutrino Normalization

- The v_{τ} normalization parameter scales the number of v_{τ} and represents a deviation from the expectation w.r.t. PMNS unitarity Ξ or current v_{τ} cross-section uncertainties.
- IceCube constrained the 1σ width of this parameter to about ±25% [4].
- With the IceCube Upgrade, the uncertainty on this parameter will be reduced to about ±5%.

