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Neutrinos and Gravity

¢ Neutrinos interact with gravity = influenced by gravitational waves —> changes oscillation
behaviour (gravitationally induced decoherence)

e Determining this influence...
o ... helps to better understand neutrino oscillations
o ... yields information on stochastic gravitational waves that are not directly detectable, produced by
several sources after the Big Bang
¢ Many works using phenomenological models (e.g. [1, 7, 8, 10]) «— connection to underlying
microscopic physics not always immediate
—> Here: Study a microscopic quantum mechanical model to connect to phenomenological models

Neutrinos as an open quantum system

System b
of Interest

Environment

Isolated

Quantum System

—>

® |nvestigate effective dynamics of a neutrino (system of interest pg) interacting with gravitational waves
(environment) without the necessity to track their detailed dynamics

® Master equation for effective evolution of a neutrino:
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—> Red terms have to be postulated (phenomenological models) or derived

[Hg + H,ga, ps(t)] + D]ps(t)]

® New processes compared to an isolated qguantum system encoded in red terms:
o Energy shifts/renormalisation of the energies of pg
o Dissipation (energy flux from the system into the environment)
o Decoherence (information flux into the environment)
—> diagonalisation ("classicalisation") of pg in a certain basis

Microscopic quantum mechanical model

e Based on [11], extended for neutrinos in [3]
e System of interest: Neutrino, Hamiltonian Hg

® Environment: Gravitational waves modeled by a bath of Harmonic oscillators with frequencies w;,
positions (configuration variables) ¢; and canonically conjugated momenta p;

e Coupling: motivated by General Relativity, where the energy-momentum tensor of matter couples to
the metric (= configuration variable) of the gravitational field; coupling constants g;

¢ Total Hamiltonian of the quantum mechanical model:
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with counter term F]éc) that renormalises a Lamb-shift-like contribution to the master equation

Derivation of the master equation

® Assumptions:
o |nteraction weak compared to the free evolution of the neutrino
o QGravitational waves follow a Bose-Einstein distribution moderated by a temperature parameter I’
o Correlation functions in the environment decay on time scales much shorter than the state of the
neutrino varies (Markov assumption; holds here, see [3]) = coarse-graining, send t; — —o0

® Master equation (Lindblad form):
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® Free parameters: 1, n

Neutrino setup

® (Consider neutrinos that propagate through the Earth
e System Hamiltonian in vacuum mass basis:
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® Three bases:
o Flavour basis
o Vacuum mass pasis: ﬁéo) is diagonal for V., = 0, i.e. for vacuum. Connected to flavour basis by
PMNS matrix U'.
o Effective mass basis: f[g)) Is diagonal (with eigenvalues ﬁi) for a fixed V., i.e. for a specific layer of

~

density of the Earth. Connected to vacuum mass basis by V' (1V,).
® Solution of the master equation in effective mass basis:

e
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and in vacuum mass basis:
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® (Connection to phenomenological models:
o Phenomenological models: specific Lindblad form for dissipator D|p(t)]
—> Solution of the master equation:

is(t) = iy(0) - e BT

Then restrict number of parameters by considering specific cases where ~;; are zero or equal to
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each other
o Implications from our quantum mechanical model in vacuum:
2.8
Vi = T3 (Am;;) n=—2

© In matter: No match possible, as for the phenomenological models ;; is constant while in the
quantum mechanical model it depends on the matter density N, = different oscillation
probabilities (for ' = 0.9K,n = 10~%s, n = —2 and fitting values for 7i; using PREM [4] and
OscProb [2]):
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—> Analyses using the phenomenological ansatz from above can only constrain the free
parameters in vacuum, not in matter

e | amb-shift contribution: Renormalised using a counter term. Without renormalisation: dependence on
unphysical arbitrary cutoff-frequency (2 of gravitational waves background, diverges for {2 — oo
—> Interpretation of the Lamb-shift contribution without a renormalisation problematic

® Free parameters:
o T "Temperature" parameter characterising the gravitational waves environment
o n: Goupling strength between neutrino system and gravitational environment.
Should be determined by the coupling of matter to gravity by General Relativity. Using a
field-theoretical model from ([6, 9]), a naive comparison (see [3, 5]) yields a direct relation to the
Planck length, in particular n ~ 10~*s.
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