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Neutrinos and Gravity
• Neutrinos interact with gravity =⇒ influenced by gravitational waves =⇒ changes oscillation

behaviour (gravitationally induced decoherence)

• Determining this influence...
◦ ... helps to better understand neutrino oscillations
◦ ... yields information on stochastic gravitational waves that are not directly detectable, produced by

several sources after the Big Bang
• Many works using phenomenological models (e.g. [1, 7, 8, 10])←→ connection to underlying

microscopic physics not always immediate
=⇒ Here: Study a microscopic quantum mechanical model to connect to phenomenological models

Neutrinos as an open quantum system

• Investigate effective dynamics of a neutrino (system of interest ρ̂S) interacting with gravitational waves
(environment) without the necessity to track their detailed dynamics

• Master equation for effective evolution of a neutrino:

∂

∂t
ρ̂S(t) = − i

ℏ
[ĤS + Ĥadd, ρ̂S(t)] +D[ρ̂S(t)]

=⇒ Red terms have to be postulated (phenomenological models) or derived

• New processes compared to an isolated quantum system encoded in red terms:
◦ Energy shifts/renormalisation of the energies of ρ̂S

◦ Dissipation (energy flux from the system into the environment)
◦ Decoherence (information flux into the environment)

=⇒ diagonalisation ("classicalisation") of ρ̂S in a certain basis

Microscopic quantum mechanical model
• Based on [11], extended for neutrinos in [3]
• System of interest: Neutrino, Hamiltonian ĤS

• Environment: Gravitational waves modeled by a bath of Harmonic oscillators with frequencies ωi,
positions (configuration variables) q̂i and canonically conjugated momenta p̂i

• Coupling: motivated by General Relativity, where the energy-momentum tensor of matter couples to
the metric (= configuration variable) of the gravitational field; coupling constants gi

• Total Hamiltonian of the quantum mechanical model:
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S that renormalises a Lamb-shift-like contribution to the master equation

Derivation of the master equation

• Assumptions:
◦ Interaction weak compared to the free evolution of the neutrino
◦ Gravitational waves follow a Bose-Einstein distribution moderated by a temperature parameter T
◦ Correlation functions in the environment decay on time scales much shorter than the state of the

neutrino varies (Markov assumption; holds here, see [3]) =⇒ coarse-graining, send t0→ −∞
• Master equation (Lindblad form):
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• Free parameters: T , η

Neutrino setup
• Consider neutrinos that propagate through the Earth
• System Hamiltonian in vacuum mass basis:
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• Three bases:
◦ Flavour basis
◦ Vacuum mass basis: Ĥ

(0)
S is diagonal for Ne = 0, i.e. for vacuum. Connected to flavour basis by

PMNS matrix Û .
◦ Effective mass basis: Ĥ

(0)
S is diagonal (with eigenvalues H̃i) for a fixed Ne, i.e. for a specific layer of

density of the Earth. Connected to vacuum mass basis by Ṽ (Ne).
• Solution of the master equation in effective mass basis:
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Results

• Connection to phenomenological models:
◦ Phenomenological models: specific Lindblad form for dissipator D[ρ̂S(t)]

=⇒ Solution of the master equation:

ρ̃ij(t) = ρ̃ij(0) · e−
i
ℏ(H̃i−H̃j)t−Γijt with Γij = γijE

n

Then restrict number of parameters by considering specific cases where γij are zero or equal to
each other

◦ Implications from our quantum mechanical model in vacuum:

γij = η2c8kBT

ℏ3 (∆m2
ij)2 n = −2

◦ In matter: No match possible, as for the phenomenological models γij is constant while in the
quantum mechanical model it depends on the matter density Ne =⇒ different oscillation
probabilities (for T = 0.9K, η = 10−8s, n = −2 and fitting values for γij using PREM [4] and
OscProb [2]):
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=⇒ Analyses using the phenomenological ansatz from above can only constrain the free
parameters in vacuum, not in matter

• Lamb-shift contribution: Renormalised using a counter term. Without renormalisation: dependence on
unphysical arbitrary cutoff-frequency Ω of gravitational waves background, diverges for Ω →∞
=⇒ Interpretation of the Lamb-shift contribution without a renormalisation problematic

• Free parameters:
◦ T : "Temperature" parameter characterising the gravitational waves environment
◦ η: Coupling strength between neutrino system and gravitational environment.

Should be determined by the coupling of matter to gravity by General Relativity. Using a
field-theoretical model from ([6, 9]), a naive comparison (see [3, 5]) yields a direct relation to the
Planck length, in particular η ≈ 10−42s.
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