

Istituto Nazionale di Fisica Nucleare

Probing the dark universe through astrophysical and cosmic neutrinos

Tanmay Kumar Poddar

Istituto Nazionale di Fisica Nucleare (INFN), Gruppo Collegato di Salerno, Sezione di Napoli

Sources of astrophysical and cosmic neutrinos

(a) Pulsar public.nrao.edu/news/cannonball-pulsar (b) Neutrino emission from GRB

(c) Interaction of $C\nu B$ with the scalar radiated from NS

Astrophysical and cosmic neutrinos can interact with the light BSM scalar and vector particles (can be DM) to explain cosmic phenomena.

Pulsar kick in ULDM background

kick

Vector-neutrino interaction Lagrangian

$$-\mathcal{L}_{\rm int} = g'_{\alpha\beta}\bar{\nu}_{\alpha}\gamma^{\mu}\nu_{\beta}A'_{\mu}, \quad \alpha,\beta = e,\mu,\tau, \quad \xi_{\alpha\beta} = g'_{\alpha\beta}\hat{\mathbf{p}}\cdot\mathbf{A}' = g'_{\alpha\beta}\frac{\sqrt{2}\rho_{\rm DM}}{m_{A'}}\hat{\mathbf{p}}\cdot\hat{\mathbf{\Omega}} = \mathbf{\Omega}\cdot\hat{\mathbf{p}}$$

Scalar-neutrino interaction Lagrangian

$$-\mathcal{L}_{\rm int} = g'_{\alpha\beta}\partial_{\mu}\phi\bar{\nu}_{\alpha}\gamma^{\mu}\nu_{\beta}, \quad \alpha,\beta = e,\mu,\tau, \quad \xi_{\alpha\beta} = g'_{\alpha\beta}\hat{\mathbf{p}}\cdot\nabla\phi \simeq g'_{\alpha\beta}\sqrt{2\rho_{\rm DM}}\hat{\mathbf{p}}\cdot\mathbf{v}_{\phi}$$

Asymmetry of neutrino momentum

$$\frac{\Delta p}{p} = \frac{1}{6} \frac{\int_0^{\pi} \mathbf{F}_S(\varphi) \cdot \delta \hat{\mathbf{\Omega}} dS}{\int_0^{\pi} \mathbf{F}_S(\varphi) \cdot \hat{\mathbf{n}} dS} \simeq -\frac{1}{18} \frac{\varrho}{r_{\rm res}}$$

Resonance condition for active-sterile neutrino oscillation

$$\rho = -\frac{g'_{ff} \frac{\sqrt{2\rho_{\rm DM}}}{m_{A'}}}{V_{\nu_f}(h_p^{-1} + h_{V_{\nu_f}}^{-1})} \quad (\text{vector}), \ \rho = -\frac{g'_{ff} v_\phi \sqrt{2\rho_{\rm DM}}}{V_{\nu_f}(h_p^{-1} + h_{V_{\nu_f}}^{-1})} \quad (\text{scalar})$$

Memory signal from pulsar kick

$$|h(t)| \simeq \frac{2G}{r} \alpha L_{\nu} \mathcal{T} \lesssim 1.06 \times 10^{-19} \left(\frac{|\alpha|}{0.01}\right) \left(\frac{E_{\text{tot}}}{2 \times 10^{53} \text{ erg}}\right) \left(\frac{1 \text{ kpc}}{r}\right)$$
$$\alpha = \frac{S_{+} - S_{-}}{S_{+} + S_{-}} \simeq \frac{\Delta p}{p} = (1/18)(\varrho/r_{\text{res}})$$

Constraints on Z'

$$\dot{q}(r) = \int \int f_{\nu}(\mathbf{p}_{\nu}, r) f_{\bar{\nu}}(\mathbf{p}_{\bar{\nu}}, r) (\sigma | \mathbf{v}_{\nu} - \mathbf{v}_{\bar{\nu}} | E_{\nu} E_{\bar{\nu}}) \times \frac{E_{\nu} + E_{\bar{\nu}}}{E_{\nu} E_{\bar{\nu}}} d^{3} \mathbf{p}_{\nu} d^{3} \mathbf{p}_{\bar{\nu}} d^{3} \mathbf{p}_{\bar{\nu$$

Figure 3. Constraints on Z' from GRB (Eur.Phys.J.C 83 (2023) 3, 223)

Scalar field interaction with $\mathbf{C}\nu\mathbf{B}$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_{\phi}^2 \phi^2 - g_e \phi \rho$$

Figure 1. Variation of GW intensity with the frequency of radiation

$$\alpha = 1.8 \times 10^{-4} \sigma_1, \quad \sigma_1 = \frac{g_{ff'}/m_{A'}}{x_{\text{res}}\eta} \quad \text{(UVDM)}, \quad \alpha = 1.8 \times 10^{-7} \sigma_2, \quad \sigma_2 = \frac{g_{ff'}}{x_{\text{res}}\eta} \quad \text{(USDM)}$$

SME and pulsar kick

$$(i\Gamma_{lm}^{\nu}\partial_{\nu} - M_{lm})\nu_{m} = 0$$

$$\Gamma_{lm}^{\nu} \equiv \gamma^{\nu}\delta_{lm} + c_{lm}^{\mu\nu}\gamma_{\mu} + d_{lm}^{\mu\nu}\gamma_{5}\gamma_{\mu} + e_{lm}^{\nu} + if_{lm}^{\nu}\gamma_{5} + \frac{1}{2}g_{lm}^{\lambda\mu\nu}\sigma_{\lambda\mu}$$

$$M_{lm} \equiv m_{lm} + im_{5lm}\gamma_{5} + a_{lm}^{\mu}\gamma_{\mu} + b_{lm}^{\mu}\gamma_{5}\gamma_{\mu} + \frac{1}{2}H_{lm}^{\mu\nu}\sigma_{\mu\nu}$$
Leading order effective Hamiltonian

$$h_{\rm eff} = \frac{1}{E} (a_L^\mu p_\mu - c_L^{\mu\nu} p_\mu p_\nu)$$

$$\phi(r) = \frac{g_e}{m_\phi r} \Big[e^{-m_\phi r} \int_0^r r' \rho(r') \sinh(m_\phi r') dr' + \sinh(m_\phi r) \int_r^\infty r' \rho(r') e^{-m_\phi r'} dr' \Big]$$

Variation of electron mass

$$\frac{\Delta m_e}{m_e}\Big)_{net} = \frac{3g_e^2 N}{4\pi R^3 m_\phi^2 m_e} \frac{e^{-m_\phi R}}{m_\phi R} (\sinh(m_\phi R) - m_\phi R \cosh(m_\phi R))$$

Scalar induced magnetic field

$$B_{\phi}^{net}(R) = \frac{3g_e^2 N}{4\pi m_{\phi}^3 R^3 \Omega} \Big(\frac{1}{R^3} + \frac{m_{\phi}}{R^2}\Big) e^{-m_{\phi}R} (\sinh(m_{\phi}R) - m_{\phi}R \cosh(m_{\phi}R)).$$

Pulsar spin-down

$$\frac{dE}{dt} = \frac{1}{8\pi^2} \Omega k^3 \int \int d\Omega_n |\hat{\mathbf{n}} \cdot \mathbf{p}_{\Omega}|^2 = \frac{1}{12\pi} g_e^2 R^2 \Omega^4 N^2 \sin^2 \theta_m \left(1 - \frac{m_{\phi}^2}{\Omega^2}\right)^{\frac{3}{2}} \text{ (arXiv: 2404.18309)}$$

Figure 4. Scalar mass induced by $C\nu B$

The mass of the scalar modifies due to the C ν B background

$$m_{\phi}^2 \rightarrow m_{\phi}^2 + y_{\nu}^2 \frac{n_{\nu}}{m_{\nu}}$$

$$a_L = g'_{ff} \frac{\sqrt{2\rho_{\rm DM}}}{m'_A} \lesssim 8.9 \times 10^{-13} \,\mathrm{eV}, \ c_L = g'_{ff} \frac{\sqrt{2\rho_{\rm DM}}}{2pm'_A} \lesssim 5.2 \times 10^{-21}$$
 (JCAP 01 (2024) 069)

Energizing GRBs via Z' mediated neutrino heating

Figure 2. $\nu \bar{\nu} \rightarrow e^+ e^-$ in energizing GRB $E_{\text{GRB}}^{\text{max}} \sim 10^{52} \text{erg}, \text{ Observation}$ $E_{GRB}^{\text{Theory}} \sim 1.5 \times 10^{50} \text{erg}, \text{ Newtonian}$ $E_{GRB}^{\text{Theory}} \sim 4.3 \times 10^{51} \text{erg}, \text{ Schwarzschild}$

Figure 5. g_e vs. m_ϕ for different y_ν and η in search for scalar magnetic field

Figure 6. g_e vs. m_{ϕ} for different y_{ν} and η in search for electron mass variation

Figure 7. g_e vs. m_{ϕ} for different y_{ν} from pulsar spin-down

Acknowledgements

I acknowledge Srubabati Goswami, Gaetano Lambiase, and Arvind Kumar Mishra for collaborations.

Neutrino 2024, Milan, Italy

June 18, 2024

poddar@sa.infn.it