Contribution ID: 248

Type: Poster

Energy Dependence of Angular-Driven Flavor Instabilities in Dense Astrophysical Environments

Tuesday, 18 June 2024 17:30 (2 hours)

In core-collapse supernovae and neutron star mergers, the neutrino density is so large that neutrino-neutrino refraction can lead to collective flavor conversions independent of vacuum mixing. These are called fast flavor conversions since the neutrino self-interaction strength μ represents the characteristic time scale of the system. In the limit of vanishing vacuum mixing, one necessary condition for these conversions is the existence of a zero-crossing in the momentum angular distribution of neutrino FLN (Flavor Lepton Number). However, it has been empirically realized that the vacuum frequency ω can significantly affect the onset of flavor conversion even if $\mu \gg \omega$. In this work, we study more deeply the impact of ω on angular-driven flavor instabilities. Focusing on a homogeneous and axially symmetric neutrino gas, we show that a non-zero vacuum frequency is responsible for inducing flavor instabilities with a non-negligible growth rate in a neutrino gas that would be stable for $\omega = 0$, despite the presence of a FLN angular zero-crossing. Relying on a perturbative approach, we establish a connection between odd powers of ω and the neutrino FPN (Flavor Particle Number) angular distribution, showing that flavor conversion dynamics under $\omega \neq 0$ are influenced by both FLN and FPN. We also explore the possibility of mapping the system with $\omega \neq 0$ to an effective one with $\omega = 0$.

Poster prize

Yes

Given name

Pedro

Surname

Dedin Neto

First affiliation

University of Campinas

Second affiliation

Niels Bohr Institute

Institutional email

dedin@ifi.unicamp.br

Gender

Male

Collaboration (if any)

Primary author: DEDIN NETO, Pedro (University of Campinas, Niels Bohr Institute)
Co-authors: TAMBORRA, Irene (Niels Bohr Institute); Dr SHALGAR, Shashank (Niels Bohr Institute)
Presenter: DEDIN NETO, Pedro (University of Campinas, Niels Bohr Institute)
Session Classification: Poster session and reception 1

Track Classification: Astrophysical neutrinos