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Introduction

In core-collapse supernovae (CCSN) and neutron star mergers (NSM), neutrino flavor
conversion remains an unsolved mystery. Inside these environments, free-streaming
neutrinos obey the following equation of motion:

i
(
∂t + ~v · ~∇~x

)
ρ(t, ~p, ~x) = [H, ρ(t, ~p, ~x)]. (1)

The Hamiltonian contain the usual vacuum component Hvac ∼ ω = ∆m2/2E, the
potential due to forward scattering on electronsHmatt ∼ λ =

√
2GFne, and a neutrino-

neutrino potential [1, 2]

Hνν = µ

∫
d~p′(1− p̂ · p̂′)[ρ(~p′)− ρ̄(~p′)], µ =

√
2GFnν. (2)

This term leads to different collective phenomena, usually classified as slow, when
dependent on ω, and fast when not (µ � ω). The last is strictly driven by the
directional angular distribution of neutrinos, in which the vacuum term is usually
ignored. In this work [3], we analyze how non-vanishing vacuum mixing (ω 6= 0) can
affect the onset of angular-driven flavor conversions, showing that the assumption
ω = 0 may miss sizable conversion rates for realistic ω/µ ratios.

Neutrino System

Simplifications: Homogeneous, axially-symmetric, and mono-energetic
neutrino gas;
In a two neutrino families approximation(νe, νx = νµ, ντ):

ρ(t, v) =

(
ρee(t, v) ρex(t, v)
ρ∗ex(t, v) ρxx(t, v)

)
and ρ̄(t, v) =

(
ρ̄ee(t, v) ρ̄ex(t, v)
ρ̄∗ex(t, v) ρ̄xx(t, v)

)
, (3)

where v ≡ cos θ represents the projection of the velocity ~v = ~p/E along the
axis of symmetry.

Linear Stability Analysis

If |ρex| � |ρee − ρxx| (e.g., at the neutrino production), one can linearize the equations
of motion at first order in |ρex|, such that the solutions will be plane waves:

ρex(t, v) = Qve
−iΩt and ρ̄ex(t, v) = Q̄ve

−iΩt . (4)

Unstable solutions will have eigenfrequencies Ω = γ + iκ with κ > 0. To find these
solutions, one needs to solve the following eigenvalue problem (Ω′ = Ω−Dz

0 − λ):

∣∣∣∣I0 − 1 −I1
I1 −I2 − 1

∣∣∣∣ = 0, In(Ω
′) = µ

∫
dvvn

[
ḡv

Ω′ + µvDz
1 + ωc

− gv
Ω′ + µvDz

1 + ωc

]
, (5)

where

gv ≡ ρ0ee(v)− ρ0xx(v), ḡv ≡ ρ̄0ee(v)− ρ̄0xx(v), Dz
n ≡

∫ +1

−1

vn(gv − ḡv). (6)

In this work, we adopt forward peaked Gaussian for the angular distributions,
characterized by a standard deviation σνβ and a normalization ανβ.

ρ0ββ(v) = ανβG(v; 1, σνβ) normalized such that
∫ +1

−1

dvρ0ββ(v) =
nνβ

nνe

= ανβ, (7)

Fast Limit - Vanishing Vacuum Mixing (ω = 0)

In this limit, the flavor stability will depend only on the angular distribution electron
lepton number (ELN):

In(Ω
′) = µ

∫
dvvn (ḡv − gv)

Ω′ + µvDz
1

= µ

∫
dvvn (ρ̄

0
ee − ρ0ee)

Ω′ + µvDz
1

, (ρ̄0xx = ρ0xx). (8)

This system is completely stable if there is no ELN zero-crossing (ζ = 0) or if Dz
0 and

Dz
1 have opposite signs [4].
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Figure 1. (Left) Initial angular distributions for the four benchmark cases adopted in this work. (Right)
Contour plot of the growth rate κ for vanishing vacuum mixing in the plane spanned by σν̄e and αν̄e.

Non-Vanishing Vacuum Mixing (ω 6= 0)

1.Perturbative Expansion

Considering µ � ω, one can do the following expansion:

In(Ω
′) = µ

∞∑
k=0

∫
dvvnḡv − (−1)kgv

Ω′ + µvDz
1

(
ωc

Ω′ + µvDz
1

)k

. (9)

Even powers will depend on flavor lepton number (FLN) angular distributions,
i.e. ρ̄0αα(v)− ρ0αα(v);
Odd powers will depend on flavor particle number (FPN) angular
distributions, i.e. ρ̄0αα(v) + ρ0αα(v).

2.Benchmark Scenarios

Fast unstable configurations (e.g. scenario U1) show only a first-order
correction (∼ ω) with slope depending on the angular distribution of νx, ν̄x;
Fast stable configurations (e.g. scenario S2) develop instabilities depending
on the sign of ω and on the angular distribution of νx, ν̄x.
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Figure 2. Growth rate κ as a function of ω with (dashed) and without (solid) non-electron neutrinos.
(Left) Fast unstable benchmark scenario U1. (Right) Fast stable benchmark scenario S2.

3.Angular Configuration Space αν̄e × σν̄e

One can see that instabilities tend to appear around the edge of total stability for
the fast system (Fig. 1), i.e. Dz

0 = 0 and ζ = 0.
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Figure 3. Contour plot of the growth rate κ in the plane spanned by σν̄e and αν̄e for the scenario
without νx, ν̄x and ω = −5× 10−4µ (left) and ω = 5× 10−4µ (right).

Conclusions

Although µ � ω deep inside astrophysical environments, the effect of vacuummixing
is not negligible in realistic scenarios, inwhich it can induce sizable flavor instabilities.
Using a perturbative approach, we have shown that ω 6= 0 induces a dependency
on FPN in addition to the usual FLN from the fast limit. We have also explored
numerically where these new instabilities tend to appear in the space of angular
configurations. Finally, we highlight that stability conditions developed in the fast limit
ω = 0 (e.g., ELN zero-crossing) do not fully capture instabilities in a realistic scenario.
Therefore, one should be careful when using these instabilities criteria, e.g., in CCSN
and NSM simulations.
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