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[ Geo-neutrino ] Geo-neutrino : Electron-antineutrinos from natural [ KamLAND detector ]
radioactive decays in the Earth :
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Neutron capture gamma energy
2.2 MeV : captured by proton (99.48%):

4.9 MeV : captured by 12C (0.51%)
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Nodes 1879 Nodes = PMTs Decrease # of nodes, while . [ Summary ] . . . o
~_ 768 increase #of features * Significant improvements have been achieved by using new tools with Decision Tree
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* The use of neural networks showed the feasibility of PID.
E? I * Increased light intensity would improve PID accuracy
e * Machine learning may also enable analyses that were previously challenging, such
as neutrino directional detection.
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# of trainable parameters

T17 : 17inch PMT hit timing , T20 : 20inch PMT hit timing oroP" Pooling on Healoix  — % " —" 10,000,000 * The new analysis using machine learning will be applied to the final data analysis of

Conv.
Q17 : 17inch PMT charge , Q20 : 20inch PMT charge KamLAND.
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