

Understanding the Systematic Contribution from the KATRIN Rear Wall

Byron A. Daniel*¹, Max Aker², Dominic Batzler², Gen Li¹, Kirsten McMichael¹, Shailaja Mohanty², Diana Parno¹, Rudolf Sack², Magnus Schlösser², Alessandro Schwemmer³ for the KATRIN Collaboration

¹Carnegie Mellon University, ²Karlsruhe Institute of Technology, and ³Technical University of Munich

*presenter email address: bdaniel@andrew.cmu.edu

Analyzing RW Systematic via Measuring the Rate and Spectrum from RW β⁻ Events

- We divide our RW data into epochs between surface cleanings with UV and ozone.
- *****RW rate measurements are performed whenever there is no tritium in the gaseous source (e.g.,
- **RW** spectrum measurements are performed by varying the retarding energy threshold to

How Can We Model the RW Contaminant?

Conclusions and Further Studies:

Initial C_nH_m layer on RW

Au m becomes tritiated C_nH_r

 aC_nT_m is cleaned from RW

Possible Model: A big, initial C_nH_m layer that *later* saturates with tritium.

- Tritium bonds to the open pi bonds in the $C_n H_m$ creating $a C_n T_m$.
- 2. UV and ozone cleaning removes the chemisorbed tritium and some of the aC_nT_m beneath (*Fusion Science and* Technology 80.3-4 (2024): 303-310.).

Mitigated RW Surface

3. The aC_nT_m has been almost removed. We see that there is limited accumulation of tritium activity (T adsorbs poorly on Au).

Conclusion:

The RW tritium spectrum has a systematic effect on the neutrino mass which can be addressed by including the RW spectrum in neutrino mass fits.

This systematic effect has been successfully mitigated.

Further Studies:

We plan to next determine the RW uncertainty for KATRIN datasets post KNM1-5.

ort of Helmholtz Association (HGF), Ministry for Education and Research BMBF, the doctoral school KSETA at KIT, Helmholtz Initiative and Networking Fund, Max Planck Research Group, and DFG in Germany; Ministry of Education, Youth and Sport in the Czech Republic; INFN in Italy; the National search and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation in Thailand; and the DOE Office of Science, Nuclear Physics in the United States. This project has received funding from the ERC under the European Union Horizon 2020 ster support at the Institute for Astroparticle Physics at KIT, Max Planck Computing and Data Facility (MPCDF), and the National Energy Research Scientific Com research and innovation programme. We thank the com