# Project 8: Waveguide CRES Measurements of Tritium PROJECT Spectrum and <sup>83m</sup>Kr Conversion Electrons

Walter Pettus<sup>1</sup> and Yu-Hao Sun<sup>2</sup> (for the Project 8 Collaboration) <sup>1</sup>Indiana University, Bloomington, IN, USA <sup>2</sup>Case Western Reserve University, Cleveland, OH, USA

## Waveguide CRES Apparatus

Cyclotron Radiation Emission Spectroscopy (CRES) leverages the relativistic shift in cyclotron frequency to make a frequency-based measurement of electron energy





### **High-Resolution Spectroscopy of** <sup>83m</sup>Kr Conversion Electrons

High-resolution CRES spectra were recorded of <sup>83m</sup>Kr conversion electrons produced in the 32-keV isomeric transitions.



Cutaway of the cryogenic CRES cell, where electrons from radioactive decays are magnetically trapped and measured



- Magnetically trapped electrons from tritium  $\beta$ -decay or <sup>83m</sup>Kr isomeric transitions emit cyclotron radiation signals inside a cell made with cylindrical microwave guide.
- Amplification  $\longrightarrow$  Mixing  $\longrightarrow$  Digitization  $\longrightarrow$  Short-time Fourier transform  $\rightarrow$  Track identification.
- Event start frequency encodes the detected initial energy of the electrons from decay.
- Frequency positions of the conversion peaks were extracted by combined fit of multiple frequency peaks.
- CRES frequency-energy relation demonstrated over wide energy range.
- Measurements of the 32-keV gamma energy and Kr shell electron binding energies are deduced based on the CRES frequency-energy relation.
- Precision is improved in six Kr shell electron binding energies compared to literature.

#### **Systematics and Detector Effects**

### First CRES Tritium Spectrum and Neutrino Mass Limit



Data and fits of the 17.8 keV<sup>83m</sup>Kr conversion electron K-line measured in shallow (high-resolution) and deep (high-statistics) electron trapping configurations.



Frequency-dependent effects studied using the 17.8 keV<sup>83m</sup>Kr conversion electron line under varying magnetic background fields.

Energy (eV) 16000 16500 • Gray curve: frequency - 1.50 Frequency response only nnits) 1.5 variation of detection Full  $\epsilon(E_{\rm kin})$  efficiency <u>-</u> 1.25 දු efficien 0.75 efficiency extracted from (arb data. <u>9 0 9 -</u> 0.50 9



Results published in Phys. Rev. Lett. **131** (2023) 102502 (also arXiv:2212.05048)

- Editor's Suggestion and featured in APS Physics
- Measured tritium endpoint spectrum with Bayesian and frequentist fits.
- Tritium endpoint results (1  $\sigma$ ): Bayesian 18553<sup>+18</sup><sub>-19</sub> eV, Frequentist 18548<sup>+19</sup><sub>-19</sub> eV.
- Neutrino mass limit (90% CL): Bayesian  $< 155 \,\text{eV}$ , Frequentist  $< 152 \,\text{eV}$ .
- No events detected above the tritium endpoint  $\longrightarrow$  Background rate:  $3 \times 10^{-10}$ /eV/s (90% CL).



• Editor's Suggestion

This work supported by the US DOE Office of Nuclear **Physics, the US NSF, the PRISMA+ Cluster of Excellence at the University of Mainz, and internal** investments at all institutions.



#### Conclusions

- In Project 8 Phase II, the first CRES tritium  $\beta$ -spectrum was recorded with no background observed beyond the endpoint and an upper limit of 155(152) eV (90%) CL) for neutrino mass was reported in a Bayesian (frequentist) analysis.
- Preliminary measurements of the 32-keV gamma energy and Kr shell electron binding energies were obtained based on high-resolution <sup>83m</sup>Kr conversion electron spectra. Six binding energies having improved precision compared with literature values. • This work paves the way for future CRES neutrino mass measurement and <sup>83m</sup>Kr

conversion electron spectroscopy.







