

Karlsruhe Institute of Technology

Towards Quantum Sensor Arrays for a Next-Generation Neutrino-Mass Measurement using Tritium

F. Bauer¹, N. Kovac², T. App², B. Bornschein², D. de Vincenz², F. Glück², S. Heyns², M. Müller¹, R. Sack², M. Schlösser², M. Steidl², K. Valerius², and S. Kempf^{1,3}

¹Institute of Micro- and Nanoelectronic Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany ²Institute for Astroparticle Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany ³Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

Neutrino-Mass Measurement

KATRIN and beyond (KATRIN++)

Absorber: Energy absorption by

Pick-up coil: Transfer of magnetization

Cold Chicane

Operation regime of MMCs

Sufficiently sensitive ($\delta M/\delta T$ high) for low magnetic fields (10s of mT) and very low temperatures (a few mK)

Direct interface between source at room temperature and detector array in mK cryostat

 \rightarrow Modification of KATRIN beamline behind main spectrometer required

 \rightarrow Cold chicane

ELECTRON project

Cryogenic set-up for measurement of Kr^{83m} spectrum with MMCs

Gradiometric MMC pixels

KIT – The Research University in the Helmholtz Association

