

Weiran Xu (MIT) on behalf of the KATRIN collaboration

Neutrino mass measurement with MAC-E-filter spectroscopy

KATRIN aims for a final sensitivity of $m_{\nu} < 0.3 \text{ eV}$ at 90% confidence level, by measuring tritium β -decay electrons with a Magnetic Adiabatic Collimation and Electrostatic (MAC-E) filter.

- β -decay of T₂ molecules
 - Spectral distortion from non-zero $m_{
 u}$
 - Low Q-value, short half-life
- \rightarrow large statistics near the endpoint

- Adiabatic transportation
 - Filter width of $\mathcal{O}(1\text{eV})$ represents transverse energy at analyzing plane

KATRIN improvements over time

The Bayesian approach

• Evolution of Bayesian sensitivity at 90% credible interval, with a flat-positive prior on m_{ν}^2 :

Retarding energy (eV) Retarding energy (eV)

80% reduction on systematic uncertainties and 50% reduction on background rate. Details in A.Schwemmer, Poster ID 12.

The frequentist results

- Bayesian advantage in KATRIN analysis
 - no model extension by adopting $m_{\nu}^2 \geq 0 \, {\rm eV}^2$ as prior
 - linear scalability in sampling time with expanding statistics: combine data sets with m_{ν}^2 (this work) / multi-variate priors
- Analysis methods fixed with Monte Carlo studies, providing unbiased results on real data (to be published soon).

 m_{ν}^{2} (eV²)

- Best-fit values [1] from maximum likelihood estimation, based on highly optimized model evaluation (this work).
- Upper limit of $m_{\nu} < 0.45 \,\text{eV}$ at 90% C.L. with the Lokhov-Tkachov method [2] to force no gain from fitted $m_{\nu}^2 < 0 \,\text{eV}^2$.

REFERENCES

[1] Released at NEUTRINO 2024.

- [2] A. Lokhov, & F. Tkachov, *Phys. Part. Nucl.*46, 347 (2015).
- [3] D. Foreman-Mackey, D. Hogg, D. Lang, & J. Goodman, *arXiv:1202.3665* (2013).

ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of Energy (DE-SC0011091), the Helmholtz Association (HGF) and all institutions of the KATRIN collaboration. Scan the QR code for a full list of funding agencies for the KATRIN experiment.

MORE INFORMATION

Weiran Xu Laboratory for Nuclear Science MIT Department of Physics

