Sensitivity analysis for the neutrino mass experiment Project 8

C. Claessens¹, T. E. Weiss², for the Project 8 Collaboration ¹University of Washington, Seattle, WA, USA ²Yale University, New Haven, CT, USA

Neutrino mass sensitivity analysis in Project 8

Project 8 pursues a direct neutrino mass measurement with a target sensitivity of 40 meV/c² (90% C.L.) by recording a tritium spectrum using **Cyclotron Radiation Emission Spectroscopy (CRES)**.

Including cavity-specific statistical and systematic effects

CRES in a cavity poses several advantages that improve sensitivity.

Large effective volume V_{eff}:

- V scales with $1/f^3 \rightarrow 1/B^3$
- Low-frequency cavity increases statistics

Goals of sensitivity analysis:

- Study requirements to achieve 40 meV/c² goal in Phase IV
- Optimize design parameters to minimize uncertainty on m_{R}
- **Predict sensitivity** of Project 8's future experiments

Analytic estimation of neutrino mass sensitivity for differential β-decay measurements

- **Statistical uncertainty:** Estimate m_{β} by counting the number of events in an energy window ΔE below the spectrum endpoint E_{α}
- **Systematic uncertainty:** Introduced from energy broadening σ_i and broadening uncertainty $\delta \sigma_i$

- Electron power couples to the TE₀₁₁ mode
- Resonant mode enhances signal power \rightarrow improves detection efficiency

Energy broadenings σ_i :

- Frequency resolution: Sinusoid's Cramér-Rao Lower Bound (vs. *n*) for given Signal-to-Noise Ratio (SNR)
- Calculate SNR from cavity and amplifier temperatures, cavity Q, and attenuations
- Magnetic field broadening:
 - Axial/pitch (θ):

Analytic model of trap shape correction (vs. *n*)

 \circ r, ϕ , time: Calculated externally

• Total uncertainty on m_{β}^{2} :

$$\sigma_{m_{\beta}^2} = 4 \sqrt{\frac{1}{(6 C_T V_{\text{eff}} n t)^2}} \left[C_T V_{\text{eff}} n t \Delta E + \frac{b t}{\Delta E} \right] + \sum_i \sigma_i^2(n) \cdot \delta \sigma_i^2$$

t:runtime *n*:gas density V_{eff} : effective volume *b*:background

Phase II: A reality check for sensitivity estimation

• All σ_i must be calibrated to 1% precision ($\delta \sigma_i$)

Sensitivity in future Project 8 experiments

A Phase IV scenario that reaches 40 meV sensitivity:

- Statistics target:
 - 10 cavities with 2.5 m diameter running for 6 years
 - $\sim ~5\%$ trapping efficiency, ~60% detection efficiency
- Systematic broadening σ_i target: 0.13 eV (total)
 - Frequency resolution: 0.05 eV
 - Resolution from spatial and temporal field variation: 0.09 eV each

Optimum density minimizes uncertainty

Phase IV with 10 cavities

- In Phase II, we recorded the **first tritium spectrum using CRES**.
- From this data, we placed a limit on m_{β} at 90% C.L.: Frequentist: <152 eV/c²; Bayesian: <155 eV/c²
- Sensitivity predictions are in great agreement with these results.

Next: Intermediate size experiment (e.g. 2 m³) with sub-eV sensitivity

- Demonstrate technology requirements for Phase IV
- 0.2 eV total energy broadening at ~20 mT field
- Achieve excellent SNR with 20 mK amplifier temperature and 4 K cavity temperature
- Compatibility of magnet design with atomic tritium: Magnetic atom and electron traps, and homogenous background field

Acknowledgments: This work is supported by the US DOE Office of Nuclear Physics, the US NSF, the PRISMA+ Cluster of Excellence at the University of Mainz, and internal investments at all institutions.