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Background sources
1. Radioactivity from crystals
2. Radioactivity from detector components
3. Radioactivity from infrastructure
4. 2νββ pileup
5. Muons
6. Neutrons

Background index evaluated in 3034 ± 15 keV.

CUPID, the next generation bolometric double beta decay search
• CUORE infrastructure
• ∼ 1600 Li2100MoO4 scintillating crystals

(45 x 45 x 45 mm)
• Ge bolometric light detectors
• Detection of heat and scintillation light allowing α dis-

crimination
• 100Mo, Qββ = 3034 keV
• Total mass = 450 kg, 100Mo mass = 240 kg

CUPID discovery sensitivity:
T1/2 (100Mo 0νββ)> 1027 y
mββ < 12 – 20 meV
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4. 2νββ Pile-up
• Two events occurring close enough in time

that are not resolved, but reconstructed as
a single event at their summed energy

• To a first approximation, the parameters
that determine the ability to identify pile-
up events are the detector rise time and
the signal-to-noise ratio

• CUPID baseline:
Light Detector
instrumented
with Neganov-
Trofimov-Luke,
NTL, amplifica-
tion

• R&D results of NTL performances com-
bined with a phenomenological law are
used for background estimate

5. Neutrons
• Neutron shielding to be expanded to mit-

igate (n,γ) reactions in Mo and Cu
• With additional 10 cm of polyethylene on

the top and at sides, neutron backgrounds
suppressed to ∼2 · 10−6 cts/(keV·kg·y)

1. Backgrounds from 238U/232Th in the bulk and surface of the crystals
• Bulk and surface contaminations from the CUPID-Mo background model [1]

226Ra to 210Pb 228Th to 208Pb BI 226Ra BI 228Th BI Total
[ckky] [ckky] [ckky]

< 0.2 µBq/kg 0.43+0.16
−0.15 µBq/kg 0 (2.7+1.3

−1.0) · 10−6 (2.7+1.3
−1.0) · 10−6

2.0 ± 0.5 nBq/cm2 < 2.5 nBq/cm2 (3.0+1.0
−0.9) · 10−6 < 8.7 · 10−6 (6.4+3.4

−2.8)· 10−6

Total (9.5+3.1
−1.7) · 10−6

• Cosmogenics: We use ACTIVIA and assume 90 days exposure and 1 year cool-down. Po-
tentially dangerous isotopes: 42K, 82Rb, 88Y and 56Co. Total background expected from
cosmogenic activation isotopes: 2.3 · 10−6 cts/(keV·kg·y)

BI: (1.2 +0.3
−0.2)· 10−5 cts/(keV·kg·y)

2. Background from detector components
• Includes copper frames, PTFE supports, cabling
• For copper holders we use the activities from the CUORE background model [2]
• For PTFE and cabling we use measured upper limits by ICPMS and gamma-ray spectroscopy
• Primary contribution from 238U and 232Th surface contamination in copper through the β

decays of 214Bi and 208Tl
BI: (4.0 ±0.4 )· 10−5 cts/(keV·kg·y)

3. Backgrounds from infrastructure
• Close infrastructure: innermost thermal shield (10 mK), components and inner shielding at

10 mK. Primary contribution from 238U and 232Th surface contamination.
BI: (7.1 ±0.5 )· 10−6 cts/(keV·kg·y)

• Infrastructure: 50 mK, 600 mK, 4 K, 40 K and 300 K thermal shield, internal lead shielding
on sides and top. Background from 238U and 232Th bulk radioactivity.
BI: (3.0 +1.3

−0.8))· 10−6 cts/(keV·kg·y)
• We use the activities from the CUORE background model [2]

Total predicted background
Probability density distributions of the background in-
dex from the radioactive contaminations in materials:
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CUPID background pre-
dictions based on results
from precursor experiments
(CUORE and CUPID-Mo)
and on improved new design.

The black lines show the mode of
the expected distribution and the
light band the ±1σ uncertainty

6. Muons
• Additional muon veto. Construction on-

going
• From simulations, muon rejection effi-

ciency ∼98.9 % of single-site muon in-
duced events, leads to
(1.3 · 10−6 cts/(keV·kg·y)
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