Backgrounds of the CUPID experiment

Pia Loaiza, IJCLab CNRS/IN2P3, Université Paris Saclay on behalf of the CUPID collaboration

CUPID, the next generation bolometric double beta decay search

- CUORE infrastructure
- ~ $1600 \text{ Li}_2^{100} \text{MoO}_4$ scintillating crystals $(45 \times 45 \times 45 \text{ mm})$
- Ge bolometric light detectors
- Detection of heat and scintillation light allowing α discrimination
- 100 Mo, $Q_{\beta\beta} = 3034$ keV
- Total mass = 450 kg, 100 Mo mass = 240 kg

CUPID discovery sensitivity:

Background sources

- **1**. Radioactivity from crystals
- **2**. Radioactivity from detector components
- **3**. Radioactivity from infrastructure
- 4. $2\nu\beta\beta$ pileup
- **5**. Muons
- **6**. Neutrons

Background index evaluated in 3034 ± 15 keV.

Backgrounds from 238 U/ 232 Th in the bulk and surface of the crystals

• Bulk and surface contaminations from the CUPID-Mo background model [1]

²²⁶ Ra to ²¹⁰ Pb	$^{228} m Th$ to $^{208} m Pb$	BI ²²⁶Ra [ckky]	BI ²²⁸ Th [ckky]	BI Total [ckky]
$< 0.2 \; \mu { m Bq/kg}$	$0.43^{+0.16}_{-0.15}\ \mu{ m Bq/kg}$	0	$(2.7^{+1.3}_{-1.0}) \cdot 10^{-6}$	$(2.7^{+1.3}_{-1.0}) \cdot 10^{-6}$
$2.0 \pm 0.5 \ \mathrm{nBq/cm^2}$	$< 2.5 \ \mathrm{nBq/cm^2}$	$(3.0^{+1.0}_{-0.9}) \cdot 10^{-6}$	$< 8.7 \cdot 10^{-6}$	$(6.4^{+3.4}_{-2.8}) \cdot 10^{-6}$
Total				$(9.5^{+3.1}_{-1.7}) \cdot 10^{-6}$

• Cosmogenics: We use ACTIVIA and assume 90 days exposure and 1 year cool-down. Po-

4. $2\nu\beta\beta$ Pile-up

- Two events occurring close enough in time that are not resolved, but reconstructed as a single event at their summed energy
- To a first approximation, the parameters that determine the ability to identify pileup events are the detector **rise time** and the signal-to-noise ratio
- CUPID baseline: Light Detector instrumented with Neganov-Trofimov-Luke, amplifica-NTL, tion

• R&D results of NTL performances combined with a phenomenological law are used for background estimate

5. Neutrons

tentially dangerous isotopes: ⁴²K, ⁸²Rb, ⁸⁸Y and ⁵⁶Co. Total background expected from cosmogenic activation isotopes: $2.3 \cdot 10^{-6} \text{ cts/(keV \cdot kg \cdot y)}$

BI: $(1.2 + 0.3)_{-0.2} \cdot 10^{-5} \text{ cts/(keV \cdot kg \cdot y)}$

2. Background from detector components

- Includes copper frames, PTFE supports, cabling
- For copper holders we use the activities from the CUORE background model [2]
- For PTFE and cabling we use measured upper limits by ICPMS and gamma-ray spectroscopy
- Primary contribution from 238 U and 232 Th surface contamination in copper through the β decays of ²¹⁴Bi and ²⁰⁸Tl

BI: (4.0 \pm 0.4)· 10⁻⁵ cts/(keV·kg·y)

3. Backgrounds from infrastructure

- Close infrastructure: innermost thermal shield (10 mK), components and inner shielding at 10 mK. Primary contribution from 238 U and 232 Th surface contamination. **BI:** (7.1 \pm 0.5)· 10⁻⁶ cts/(keV·kg·y)
- Infrastructure: 50 mK, 600 mK, 4 K, 40 K and 300 K thermal shield, internal lead shielding on sides and top. Background from 238 U and 232 Th bulk radioactivity. **BI:** $(3.0 + 1.3)_{-0.8}) \cdot 10^{-6} \text{ cts/(keV \cdot kg \cdot y)}$

- Neutron shielding to be expanded to mitigate (n,γ) reactions in Mo and Cu
- With additional 10 cm of polyethylene on the top and at sides, neutron backgrounds suppressed to $\sim 2 \cdot 10^{-6} \text{ cts}/(\text{keV}\cdot\text{kg}\cdot\text{y})$

6. Muons

- Additional muon veto. Construction ongoing
- From simulations, muon rejection efficiency ~ 98.9 % of single-site muon induced events, leads to $(1.3 \cdot 10^{-6} \text{ cts}/(\text{keV}\cdot\text{kg}\cdot\text{y}))$

References

[1] Eur. Phys. J. C 83(7):675, 2023.

[2] arXiv:2405.17937 [nucl-ex].

• We use the activities from the CUORE background model [2]

Total predicted background

CUPID background predictions based results on experiments from precursor and CUPID-Mo) (CUORE and on improved new design.

The black lines show the mode of the expected distribution and the light band the $\pm 1\sigma$ uncertainty