

 Instrumented with neutron transmutation doped (NTD) Ge thermistors

Bolometer

 $T_{1/2}^{0\nu} > 1.8 \times 10^{24}$ yr (90% c.i.) $m_{\beta\beta} < 0.28 - 0.49$ eV (90% c.i.)

The CUPID-Mo Background Model

categorized by multi-crystal decay types [4]

CUPID-Mo built thorough background model [5] to account for as many sources of background as possible.

Simulations via Geant4 model of Edelweiss cryostat with CUPID-Mo setup

Decays generated in: cryostat & shields, crystal bulk & surface, reflecting foil bulk & surface, and close sources (e.g. Cu supports)

67 total sources included in fit

Data modeled against 3 simulated spectra: M1 γ/β , M1 α 's, and M2 γ/β

half-life

Multiplicity 1 (M1) has energy deposition only in single crystal

Probaility

The isotope ¹⁰⁰Mo has a

relatively "fast" 2vββ decay

Two common models are

dominant (SSD) hypotheses

 $T_{1/2}^{2\nu} = \left(G_{2\nu} \cdot g_{A,eff}^4 \cdot \left| M_{2\nu} \right|^2 \right)^{-1}$

higher state dominant

(HSD) and single state

Multiplicity 2 (M2) has energy shared across two crystals

100_{Тс}

100_{Mo}

 $Q_{\beta\beta} = 3034.40(17)$

2vββ Decay and Spectral Shape

Modification to decay rate proposed [6,7]

Decay rate expressed in terms of phase space factors (G's) and nuclear matrix elements (M's)

Spectral shape parameters (ξ 's) allow for probes of g_A

HSD recovered if all ξ terms = 0

 $\frac{d\Gamma}{dE} = g_{A,eff}^4 \left| M_{GT-1} \right|^2 \left(\frac{dG_0}{dE} + \xi_{3,1} \frac{dG_2}{dE} + \frac{1}{3} \xi_{3,1}^2 \frac{dG_{22}}{dE} + \left(\frac{1}{3} \xi_{3,1}^2 + \xi_{5,1} \right) \frac{dG_4}{dE} \right)$

$$\xi_{3,1} = M_{GT-3}/M_{GT-1}$$
 $\xi_{5,1} = M_{GT-5}/M_{GT-1}$

Background model Statistical favors SSD over HSD Stat. 68% c.i. Run fit with modified Stat+ Systematic model Stat. +Syst. 68% c.i Systematics via Toy Monte-Carlo

100_{Ru}

⁵⁰ [siun Strong anticorrelation between 0.8 arb. ³⁰ 0.7 spectral shape parameters Use Gaussian prior on ratio of $\xi_{5,1}/\xi_{3,1}$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ονββ Decay $T_{1/2}^{0\nu} > 1.8 \times 10^{24} \text{ yr} (90\% \text{ c.i.})$ $m_{\beta\beta} < [0.28 - 0.49] \,\mathrm{eV} \,(90 \,\% \,\mathrm{c.i.})$

Excited States $T_{1/2}^{0\nu \to 0_1^+} > 1.2 \times 10^{23} \text{ yr} (90\% \text{ c.i.})$ $T_{1/2}^{0\nu \to 2_1^+} > 2.1 \times 10^{23} \text{ yr} (90\% \text{ c.i.})$ $T_{1/2}^{2\nu \to 0_1^+} = \left(7.5 \pm 0.8 \text{ (stat)}_{-0.3}^{+0.4} \text{ (syst)}\right) \times 10^{20} \text{ yr}$ $T_{1/2}^{2\nu \to 2_1^+} > 4.4 \times 10^{21} \text{ yr} (90\% \text{ c. i.})$

Background Model $b = 2.7^{+0.7}_{-0.6} \times 10^{-3}$ counts/keV/kg/yr **2vββ Decay & Spectral Shape** $T_{1/2}^{2\nu} = (7.07 \pm 0.02 \text{ (stat.)} \pm 0.11 \text{ (syst.)}) \times 10^{18} \text{ yr}$

 $\xi_{3,1} = 0.45 \pm 0.03 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$ $g_{A,eff} = 1.11 \pm 0.03 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$ ISM $g_{A,eff} = 1.0 \pm 0.1 \text{ (stat.)} \pm 0.2 \text{ (syst.)} \text{ pn-QRPA}$

0.14 0.141 0.142 0.143 0.144 0.145 0.138 0.139 (T_{1/2})⁻¹ [10⁻¹⁸ yrs]

Ratio computable from low-energy state terms (M_{GT-3} & M_{GT-5}):

• pn-QRPA: 0.364 - 0.368 (depending on g_{Aeff}) • ISM: 0.349

CUPID-Mo successfully demonstrated scintillating bolometer technology for use in CUPID

Most precise $2\nu\beta\beta$ decay half-life in ¹⁰⁰Mo and first of its type spectral shape and g_{A,eff} result

Upcoming results on ⁵⁶Co detector response for escape peaks vs. primary photo peaks

References

. The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects, EPJC 80, 44 (2020) 2.*CUPID pre-CDR*, **arXiv:1907.09376** 3. *Final results on the 0vββ decay half-life limit of ¹⁰⁰Mo from the CUPID-Mo* experiment, EPJC 82, 1033 (2022) 1. New measurement of double- β decays of ¹⁰⁰Mo to excited states of ¹⁰⁰Ru with the CUPID-Mo experiment, Phys. Rev. C 107, 025503 (2023) 5. The background model of the CUPID-Mo 0vββ experiment, EPJC 83, 675 (2023) 6. Improved description of the $2\nu\beta\beta$ -decay and a possibility to determine the effective axial-vector coupling constant, Phys. Rev. C 97, 034315 (2018) '. Angular Distributions of Emitted Electrons in the Two-Neutrino $\beta\beta$ Decay, **Universe** 7(5), 147 (2021) 8.Measurement of the 2vββ Decay Rate and Spectral Shape of ¹⁰⁰Mo from the CUPID-Mo Experiment, Phys. Rev. Lett. 131, 162501 (2023) 9. See thesis by L. Imbert for more: https://theses.hal.science/tel-04266831