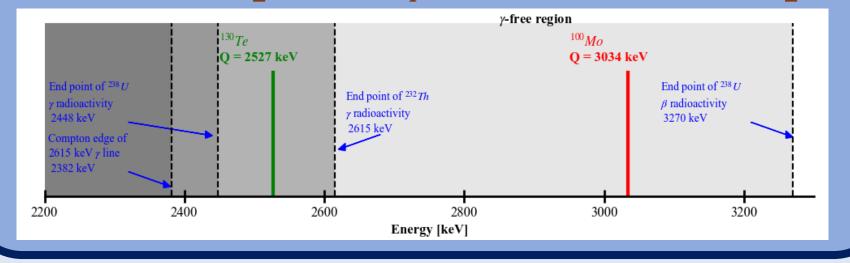


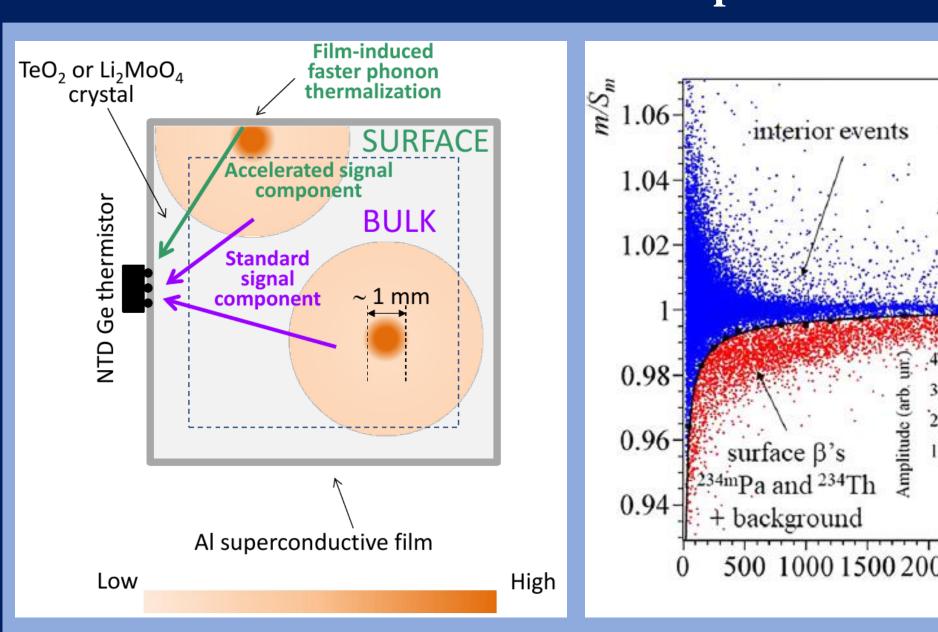
The CROSS demonstrator: structure, performance and physics reach



Contribution ID Nº 388

mariia.buchynska@ijclab.in2p3.fr

1. CROSS experiment


CROSS (Cryogenic Rare-event Observatory with Surface Sensitivity) is a project aiming at the development of a new bolometric technique to search for $0\nu\beta\beta$ decay in ¹⁰⁰Mo and ¹³⁰Te nuclei. $^{100}Mo \Rightarrow Li_2 {}^{100}MoO_4$ $^{130}Te \Rightarrow ^{130}TeO_2$

2. CROSS in a nutshell

- **Particle ID: Bulk / Surface**
- R&D on metal-coated bolometers for discrimination between bulk and near surface interactions
- > Development of 130 TeO₂
- protocol for the production of radiopure ¹³⁰Teenriched TeO₂ bolometers
- > Production and use of $Li_2^{100}MoO_4$ crystals
- Competitive experiment on the 100 Mo $0\nu\beta\beta$
- **Development of fully equipped underground facility**
- (LSC, Canfranc, Spain) to test advanced bolometers

3. Evolution of the experiment

Energy (keV)

erc

4. CROSS detector structure [4]

Cubic $\text{Li}_2^{100}\text{MoO}_4$ (LMO) and $^{130}\text{TeO}_2$ crystals ($45 \times 45 \times 45 \text{ mm}^3$) and

- square Ge wafers $(45 \times 45 \times 0.3 \text{ mm}^3)$
- Temperature sensors: neutron transmutation doped (NTD) Ge thermistors glued at crystals and Ge wafers with bi-component epoxy or UV-cured glue
- Each crystal has a direct heat sinking through supporting elements made of polytetrafluoroethylene (PTFE) or other plastic material
- Light detectors are kept with 3D-printed polylactic acid (PLA) clamps on the crystal
- Cu-to-LMO mass ratio is minimized to 6% to decrease radioactivity from surface of close elements [4] arXiv:2405.18980 (2024)

5. Neganov-Trofimov-Luke light detectors

- Electronic grade purity Ge wafer with SiO anti-reflective coating (enhances light collection by ~30%)
- Al electrodes are deposited and connected with Al bonding wires
- NTD is electrically connected to Au-coated copper pads on Kapton through gold bonding wire
- Amplification effect due to extra heat produced by charged carriers drifted by an electric field. Total heat: $E_{tot} = E_0 \cdot G_{NTL}$; $G_{NTL} \propto V_{NTL}$

Essential NTL LD parameters

 σ_{baseline} – baseline noise RMS after applying Gatti-Manfredi optimum filtering. When expressed in energy units represents also the signal-to-noise ratio for the LD. Important for $\alpha/\beta(\gamma)$ discrimination and pile-up events rejection. Can be improved by a factor 10 thanks to the NTL effect

[2] JHEP 01 (2020) 018 [3] Appl. Phys. Lett. 118, 184105 (2021)

- **Discrimination between bulk / near surface** α and β interactions [3]:
- coatings with Al, Pd, and Al-Pd are studied
- works for small samples, e.g. $2 \times 2 \times 1$ cm³ Li₂MoO₄ crystal with Al-Pd grid
- discrimination power of surface α -s: DP $\geq 4.5\sigma$
- β surface events selection efficiency (with Al-Pd): ~93%
- baseline resolution is not affected and remains at keV level (with Al-Pd)
- at the moment, there are difficulties in reproducing these results with larger samples
- Light channel is exploited via Neganov-Trofimov-Luke light detectors (NTL-LDs)
 - α discrimination due to lower light yield for alpha particles
 - to improve substantially pile-up (coincidence of two $2\nu\beta\beta$ events) rejection

6. CUPID and CROSS interplay [7]

The CROSS cryogenic facility^[8] is exploited to:

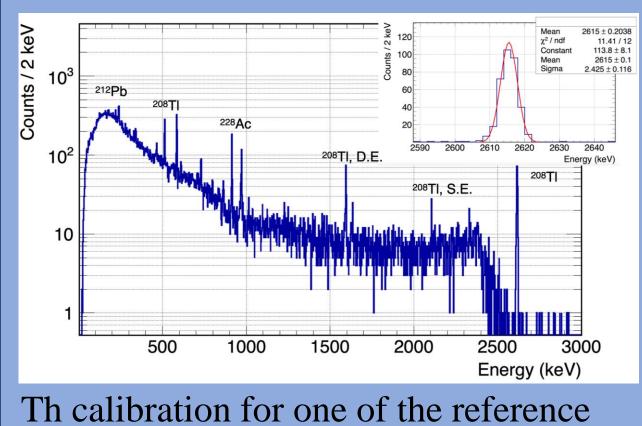
- test performance of CUPID crystals
 - crystals resolution and sensitivity

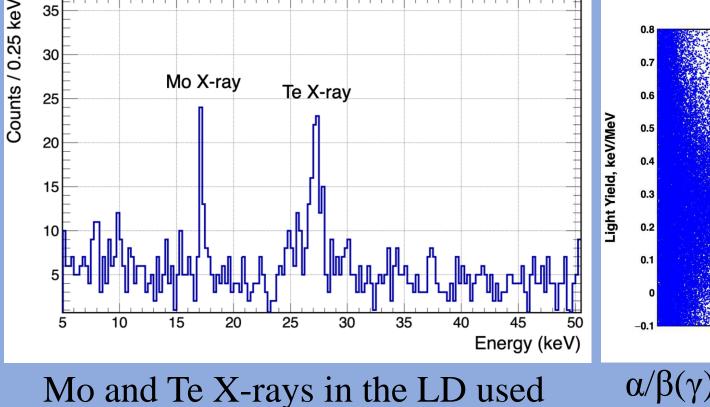
➢ test NTL-LDs

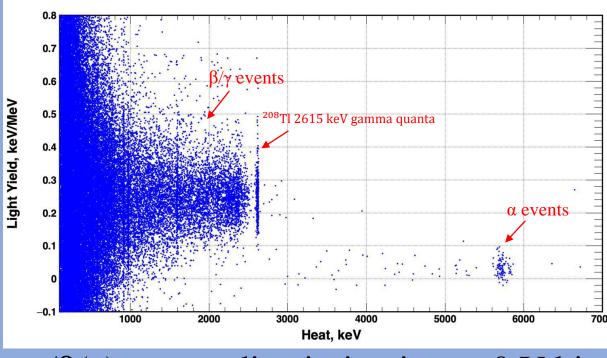
rise time – crucial for pile-up events rejection [6]. Can be kept below 0.5 ms at a proper operation point [5] NIMA 940 (2019) 320 [6] EPJC 83 (2023) 373 see poster Nº474 by Antoine Armatol

7. Recent results in Canfranc

10-crystal structure:


- 6 Li₂MoO₄ crystals (2 reference high purity Li₂¹⁰⁰MoO₄ crystals and 4 natural crystals from a US company that are under investigation)
- 2 bare ¹³⁰TeO₂ crystals
- 2^{130} TeO₂ crystals with thin metallic coating (Al for one and Al-Pd for other)
- 10 NTL light detectors with circular electrodes geometry


Operation temperatures: 17–27 mK


Measurements:

- Calibration measurements with ²³²Th source
- Background measurements
- Tests on pile-up rejection capability

for calibration

Ch9 - Ch10

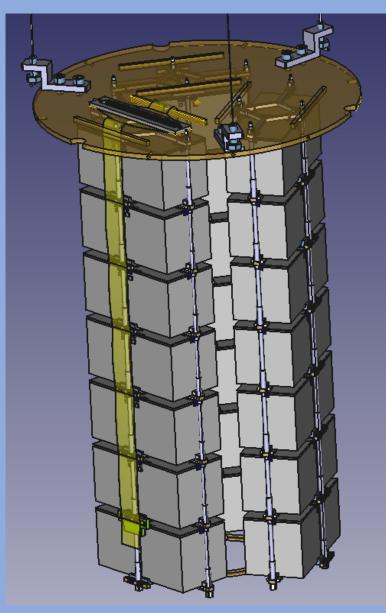
 $\alpha/\beta(\gamma)$ events discrimination at 0 V bias

- leakage current and sensitivity checks
- search for optimal geometry of electrodes
- studies on pile-ups rejection efficiency
- > probe assembly structures

[7] JINST 18 (2023) P06018 [8] JINST 18 (2023) P12004

8. CROSS demonstrator

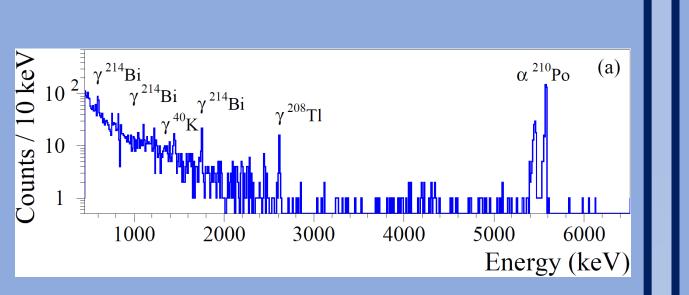
Structure


- 3 towers with 7 floors each
- Each floor has 2 crystal + 2 NTL-LD
- Top floor consists of TeO_2 crystals, that will work also as shielding to others crystals due to higher density

In total: 36 $\text{Li}_2^{100}\text{MoO}_4$ (32 ¹⁰⁰Mo-enriched) and 6 TeO₂ (all ¹³⁰Te-enriched) Total mass of ¹⁰⁰Mo: 4.7 kg

Installation envisaged within the end of 2024 Commissioning in early 2025

9. Sensitivity



@ 2615 keV 208 Tl line is (5.7 ± 0.3) keV

detectors Li₂¹⁰⁰MoO₄. Energy resolution

Results:

- ¹³⁰TeO₂ crystal performance [9]: confirmation of the radiopurity of the crystals (~1 mBq/kg activity of ²¹⁰Po) by bolometric measurements together with excellent energy resolution
- NTL LD performance:
 - **OV bias performance:** all LD have $\sigma_{\text{baseline}} < 150$ eV which means 99.9 % α rejection factor (mean value of $\sigma_{\text{baseline}} < 85 \text{ eV}$)
 - Leakage current: all NTL LD where able to stand 50 V across the electrodes without developing leakage current and 8/9 were able to stand more than 90 V
 - **80V bias performance:**
 - mean value of σ_{baseline} is $(12 \pm 4) \text{ eV}$ ($G_{NTL} \sim 11$) and SNR = 89. Taking into account that only 56% of surface area is covered by the electrodes, we expect $\sigma_{\text{baseline}} = 6.8 \text{ eV}$ and SNR = 152 for the full surface coverage
 - working at ~1 MOhm resistances of LD NTDs we reached rise-times 0.42–0.74 ms with a mean value • (0.55 ± 0.11) ms. Together with achieved SNR, these results are important for pile-up rejection
 - higher gain is obtained when light impinges on the electrode side of the Ge wafer (factor 2.5 difference) [9] arXiv:2406.01444 (2024)

Background spectrum measured by a 0.55 kg ¹³⁰TeO₂ bolometer (116 h at 27 mK)

According to current estimations (see poster Nº343 by David Cintas) background index in the CROSS demonstrator can be estimated as:

- 10^{-2} counts/keV/kg/yr in the worst case scenario
- 10^{-3} counts/keV/kg/yr in the best case scenario

Assuming 2 years live time, the CROSS experiment will be able to set a limit (at 90% confidence level) on the ¹⁰⁰Mo $0\nu\beta\beta$ decay:

- half-life $T_{1/2}^{0\nu} > 8.5 \cdot 10^{24} \text{ yr}$ and $\langle m_{\beta\beta} \rangle < (0.131-0.221) \text{ eV}$ in the worst case scenario
- half-life $T_{1/2}^{0\nu} > 1.2 \cdot 10^{25} \text{ yr}$ and $\langle m_{\beta\beta} \rangle < (0.110-0.186) \text{ eV}$ in the best case scenario

Even in the worst case scenario, the CROSS demonstrator will have higher sensitivity on the ¹⁰⁰Mo $0\nu\beta\beta$ than the best current limits established by CUPID-Mo [10] and AMoRE-I [11] experiments.

[10] Eur.Phys.J.C 82 (2022) 11, 1033

[11] H.B. Kim. 2023. Result of AMoRE-I Experiment. TAUP, 30 August, Vienna