Contribution ID: 269

Type: Poster

Reconstruction of muon events with the CUORE experiment

Tuesday, 18 June 2024 17:30 (2 hours)

Located underground, at the Gran Sasso National Laboratory, the Cryogenic Underground Observatory for Rare Events (CUORE) is a neutrinoless double beta $(0\nu\beta\beta)$ decay experiment employing bolometric detectors. CUORE consists of an array of 988 TeO₂ crystals acting as both the source and the detector for the search of $0\nu\beta\beta$ decay in 206 kg of ¹³⁰Te. Although the CUORE experiment is not optimized to be a particle tracker, the geometry and segmentation of CUORE allow the in-situ reconstruction of track-like events, such as cosmic-ray muons that do not get attenuated by the Gran Sasso mountains. The reconstruction of this kind of events in a 3D calorimeter lattice is a novel technique. In this poster, I present studies on the in-situ reconstruction of muon events and related induced backgrounds as well as the implications for CUPID, CUORE's successor.

Poster prize

Yes

Given name

Jorge

Surname

Torres

First affiliation

Yale University

Second affiliation

Institutional email

jorge.torresespinosa@yale.edu

Gender

Male

Collaboration (if any)

CUORE/CUPID

 Primary author:
 TORRES ESPINOSA, Jorge Alberto

 Co-author:
 MAYER, Daniel (Massachusetts Institute of Technology)

Presenter: TORRES ESPINOSA, Jorge Alberto

Session Classification: Poster session and reception 1

Track Classification: Neutrinoless Double Beta Decay