Background decomposition of the CUORE experiment and measurement of the $2\nu\beta\beta$ half-life of ¹³⁰Te

Stefano Ghislandi^{1,2}, on behalf of the CUORE Collaboration

¹Gran Sasso Science Institute, Italy ²INFN Laboratori Nazionali del Gran Sasso, Italy

CONTRIBUTION ID: 76

The CUORE experiment

The CUORE (Cryogenic Underground Observatory for Rare Events) main search is 0vββ in ¹³⁰Te (Q-value~2527 keV), a beyond Standard Model process whose discovery would:

- **1.** Assess the Majorana nature to neutrinos
- 2. Give essential information about neutrino masses
- **3.** Provide an example of leptogenesis mechanism

The CUORE experiment

- Underground experiment at LNGS (Italy), <u>~1400 m</u> <u>under the Gran Sasso mountain</u>
- Searching 0vββ exploiting *close-packed array* of 988 TeO, crystals operated as *cryogenic* calorimeters and cooled down at ~15 mK
- Stable data taking since 2019, latest limit (90% C.I) [1]: $T^{0\nu}_{1/2}$ > 3.8 ·10²⁵ yr

The CUORE background model fit

Low background in the region of interest (~10⁻² counts/keV/kg/yr) Rare events physics

<u>Deep knowledge of</u> <u>current backgrounds</u>

Data driven model of the backgrounds

M1 event

M2 event

<u>Aims:</u>

- Characterize the setup $\rightarrow \underline{essential}$ for the next-gen <u>CUPID experiment</u>
- Understand the background and *extract material contamination*
- Base for <u>high-level analyses</u> (2vββ, 0vββ-M2, etc)

How to build it:

1. Look for *signatures in the data* (peaks, continuum, etc) **2.** Geant4 Monte Carlo simulation for each background source in each volume of the experimental setup \rightarrow ~80 contributions **3.** Bayesian simultaneous fit of M1 (1 spectrum) and M2 diagonal bands (39 spectra) with a linear combination of the background sources 4. Priors given by *extensive assays* and *previous experiments*

- index (BI) in the region of interest
- background component
- <u>Check and validations</u> of CUORE background *projections* [3]
- Analysis of recontaminations

<u>M2 diagonal bands "technique" (example with ²¹⁰Po peak)</u>

Measurement of $2\nu\beta\beta$ half-life of ¹³⁰Te

Studies of the $2\nu\beta\beta$ half-life and spectral shape with the single state dominance model (1 ton·yr exposure)

- Fitting range optimizatio
 - Thinner binning to highlight spectral shapes
 - Detector selection
 - (only innermost towers)

Most precise measurement of the

stefano.ghislandi@gssi.it

2 3 4 5Energy Channel 1 [MeV]

Energy 1 [keV]

Satisfying data reconstruction in all the detector range [200,7000] keV [2]

<u>2vββ decay half-life for $\frac{130}{10}$ Te to date</u>

 $T_{1/2}^{2\nu} = 9.323^{+0.052}_{-0.037}(\text{stat.}) \times 10^{20} \text{yr}$

Systematics (~1%) under finalization

Energy [keV]

Near future:

Performed fits with the improved formalism, of primary importance for nuclear models. *Soon out!!* Systematics not dominant, (to be added)

Studies of the "Taylor expanded" shape for this decay

Effective axial coupling g_{Δ}^{eff} measurement

